Bulk‐Phase Grain Boundaries Regulation Enables Highly Reversible Zn Anodes for Rechargeable Aqueous Zn‐Ion Batteries

Dendrites and side reactions of Zn anodes severely restrict the application of aqueous Zn‐based batteries for grid‐scale energy storage. While surface/interface modification strategies have shown some progress in improving Zn anode reversibility, they still fall short in addressing the overall regul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-03, Vol.34 (11), p.n/a
Hauptverfasser: Zhang, Hong, Yang, Lizhuang, Wang, Haozhi, Cui, Bingfeng, Wang, Jingxian, Han, Xiaopeng, Hu, Wenbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Advanced functional materials
container_volume 34
creator Zhang, Hong
Yang, Lizhuang
Wang, Haozhi
Cui, Bingfeng
Wang, Jingxian
Han, Xiaopeng
Hu, Wenbin
description Dendrites and side reactions of Zn anodes severely restrict the application of aqueous Zn‐based batteries for grid‐scale energy storage. While surface/interface modification strategies have shown some progress in improving Zn anode reversibility, they still fall short in addressing the overall regulation and intrinsic mechanisms from the bulk‐phase perspective. Herein, a bulk‐phase composite Zn/CNTs anodes fabricated by a powder‐metallurgy‐based strategy is introduced. Benefiting from the regulation of grain boundary engineering on local electric conductivity, electric field distributions, and Zn atom absorption energy, the Zn/CNTs anodes effectively suppress dendrite growth and enhance corrosion resistance during Zn stripping/plating cycles. Symmetrical cells equipped with Zn/CNT4 anodes exhibit extended cycling stability with minimal voltage hysteresis (only 22 mV). Furthermore, the full cells incorporating Zn/CNT4 with commercial MnO2 demonstrate superior rate performance and specific capacitance retention after 500 h cycling. This breakthrough opens up new avenues for optimizing metallic anodes at the bulk phase level using powder metallurgy, enabling scalable manufacturing processes, and providing valuable insights for various metal anode systems. Distinctly different from the traditional surface/interface modification for the Zn anodes, this work provides a groundbreaking regulation perspective to achieve highly reversible zinc anode from bulk‐phase grain boundary optimization. Benefiting from grain boundary regulation with highly conductive CNTs, the bulk‐phase composite Zn/CNTs anodes exhibit substantial suppression of dendrite growth and enhanced corrosion resistance during Zn stripping/plating processes.
doi_str_mv 10.1002/adfm.202312469
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2954785942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954785942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-405311cfd22f5c7a1706901cc1b2acb06b3ec289e7d8261f2311a53014efbd543</originalsourceid><addsrcrecordid>eNqFUMlOwzAQtRBIlMKVcyTOKR5nP6alm1QEQiAhLpbj2K1LGhc7AXrjE_hGvgRHRXDkNKN5y8w8hM4BDwBjcslKuRkQTAIgYZwdoB7EEPsBJunhbw-Px-jE2jXGkCRB2EPvw7Z6_vr4vF0xK7ypYar2hrqtS2aUsN6dWLYVa5SuvXHNisqNZmq5qnYOeRXGKjfynmovr3XpMKmNA_iKmaXo2F7-0grdWkdxO-bOZciaRnTWp-hIssqKs5_aRw-T8f1o5i9upvNRvvB5AEnmhzgKALgsCZERTxgkOM4wcA4FYbzAcREITtJMJGVKYpDue2CRezQUsiijMOiji73v1mh3jG3oWremdispyaIwSaMsJI412LO40dYaIenWqA0zOwqYdunSLl36m64TZHvBm6rE7h82za8m13_abyHwgKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954785942</pqid></control><display><type>article</type><title>Bulk‐Phase Grain Boundaries Regulation Enables Highly Reversible Zn Anodes for Rechargeable Aqueous Zn‐Ion Batteries</title><source>Wiley Online Library All Journals</source><creator>Zhang, Hong ; Yang, Lizhuang ; Wang, Haozhi ; Cui, Bingfeng ; Wang, Jingxian ; Han, Xiaopeng ; Hu, Wenbin</creator><creatorcontrib>Zhang, Hong ; Yang, Lizhuang ; Wang, Haozhi ; Cui, Bingfeng ; Wang, Jingxian ; Han, Xiaopeng ; Hu, Wenbin</creatorcontrib><description>Dendrites and side reactions of Zn anodes severely restrict the application of aqueous Zn‐based batteries for grid‐scale energy storage. While surface/interface modification strategies have shown some progress in improving Zn anode reversibility, they still fall short in addressing the overall regulation and intrinsic mechanisms from the bulk‐phase perspective. Herein, a bulk‐phase composite Zn/CNTs anodes fabricated by a powder‐metallurgy‐based strategy is introduced. Benefiting from the regulation of grain boundary engineering on local electric conductivity, electric field distributions, and Zn atom absorption energy, the Zn/CNTs anodes effectively suppress dendrite growth and enhance corrosion resistance during Zn stripping/plating cycles. Symmetrical cells equipped with Zn/CNT4 anodes exhibit extended cycling stability with minimal voltage hysteresis (only 22 mV). Furthermore, the full cells incorporating Zn/CNT4 with commercial MnO2 demonstrate superior rate performance and specific capacitance retention after 500 h cycling. This breakthrough opens up new avenues for optimizing metallic anodes at the bulk phase level using powder metallurgy, enabling scalable manufacturing processes, and providing valuable insights for various metal anode systems. Distinctly different from the traditional surface/interface modification for the Zn anodes, this work provides a groundbreaking regulation perspective to achieve highly reversible zinc anode from bulk‐phase grain boundary optimization. Benefiting from grain boundary regulation with highly conductive CNTs, the bulk‐phase composite Zn/CNTs anodes exhibit substantial suppression of dendrite growth and enhanced corrosion resistance during Zn stripping/plating processes.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202312469</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anodes ; aqueous Zn‐ion battery ; Batteries ; bulk‐phase composite ; Corrosion resistance ; Cycles ; Electric fields ; Electrical resistivity ; Energy storage ; Grain boundaries ; grain boundary modification ; Manganese dioxide ; Powder metallurgy ; Zn anode</subject><ispartof>Advanced functional materials, 2024-03, Vol.34 (11), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-405311cfd22f5c7a1706901cc1b2acb06b3ec289e7d8261f2311a53014efbd543</citedby><cites>FETCH-LOGICAL-c3179-405311cfd22f5c7a1706901cc1b2acb06b3ec289e7d8261f2311a53014efbd543</cites><orcidid>0000-0002-7557-7133 ; 0000-0002-6300-9403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202312469$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202312469$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Yang, Lizhuang</creatorcontrib><creatorcontrib>Wang, Haozhi</creatorcontrib><creatorcontrib>Cui, Bingfeng</creatorcontrib><creatorcontrib>Wang, Jingxian</creatorcontrib><creatorcontrib>Han, Xiaopeng</creatorcontrib><creatorcontrib>Hu, Wenbin</creatorcontrib><title>Bulk‐Phase Grain Boundaries Regulation Enables Highly Reversible Zn Anodes for Rechargeable Aqueous Zn‐Ion Batteries</title><title>Advanced functional materials</title><description>Dendrites and side reactions of Zn anodes severely restrict the application of aqueous Zn‐based batteries for grid‐scale energy storage. While surface/interface modification strategies have shown some progress in improving Zn anode reversibility, they still fall short in addressing the overall regulation and intrinsic mechanisms from the bulk‐phase perspective. Herein, a bulk‐phase composite Zn/CNTs anodes fabricated by a powder‐metallurgy‐based strategy is introduced. Benefiting from the regulation of grain boundary engineering on local electric conductivity, electric field distributions, and Zn atom absorption energy, the Zn/CNTs anodes effectively suppress dendrite growth and enhance corrosion resistance during Zn stripping/plating cycles. Symmetrical cells equipped with Zn/CNT4 anodes exhibit extended cycling stability with minimal voltage hysteresis (only 22 mV). Furthermore, the full cells incorporating Zn/CNT4 with commercial MnO2 demonstrate superior rate performance and specific capacitance retention after 500 h cycling. This breakthrough opens up new avenues for optimizing metallic anodes at the bulk phase level using powder metallurgy, enabling scalable manufacturing processes, and providing valuable insights for various metal anode systems. Distinctly different from the traditional surface/interface modification for the Zn anodes, this work provides a groundbreaking regulation perspective to achieve highly reversible zinc anode from bulk‐phase grain boundary optimization. Benefiting from grain boundary regulation with highly conductive CNTs, the bulk‐phase composite Zn/CNTs anodes exhibit substantial suppression of dendrite growth and enhanced corrosion resistance during Zn stripping/plating processes.</description><subject>Anodes</subject><subject>aqueous Zn‐ion battery</subject><subject>Batteries</subject><subject>bulk‐phase composite</subject><subject>Corrosion resistance</subject><subject>Cycles</subject><subject>Electric fields</subject><subject>Electrical resistivity</subject><subject>Energy storage</subject><subject>Grain boundaries</subject><subject>grain boundary modification</subject><subject>Manganese dioxide</subject><subject>Powder metallurgy</subject><subject>Zn anode</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUMlOwzAQtRBIlMKVcyTOKR5nP6alm1QEQiAhLpbj2K1LGhc7AXrjE_hGvgRHRXDkNKN5y8w8hM4BDwBjcslKuRkQTAIgYZwdoB7EEPsBJunhbw-Px-jE2jXGkCRB2EPvw7Z6_vr4vF0xK7ypYar2hrqtS2aUsN6dWLYVa5SuvXHNisqNZmq5qnYOeRXGKjfynmovr3XpMKmNA_iKmaXo2F7-0grdWkdxO-bOZciaRnTWp-hIssqKs5_aRw-T8f1o5i9upvNRvvB5AEnmhzgKALgsCZERTxgkOM4wcA4FYbzAcREITtJMJGVKYpDue2CRezQUsiijMOiji73v1mh3jG3oWremdispyaIwSaMsJI412LO40dYaIenWqA0zOwqYdunSLl36m64TZHvBm6rE7h82za8m13_abyHwgKY</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zhang, Hong</creator><creator>Yang, Lizhuang</creator><creator>Wang, Haozhi</creator><creator>Cui, Bingfeng</creator><creator>Wang, Jingxian</creator><creator>Han, Xiaopeng</creator><creator>Hu, Wenbin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7557-7133</orcidid><orcidid>https://orcid.org/0000-0002-6300-9403</orcidid></search><sort><creationdate>20240301</creationdate><title>Bulk‐Phase Grain Boundaries Regulation Enables Highly Reversible Zn Anodes for Rechargeable Aqueous Zn‐Ion Batteries</title><author>Zhang, Hong ; Yang, Lizhuang ; Wang, Haozhi ; Cui, Bingfeng ; Wang, Jingxian ; Han, Xiaopeng ; Hu, Wenbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-405311cfd22f5c7a1706901cc1b2acb06b3ec289e7d8261f2311a53014efbd543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>aqueous Zn‐ion battery</topic><topic>Batteries</topic><topic>bulk‐phase composite</topic><topic>Corrosion resistance</topic><topic>Cycles</topic><topic>Electric fields</topic><topic>Electrical resistivity</topic><topic>Energy storage</topic><topic>Grain boundaries</topic><topic>grain boundary modification</topic><topic>Manganese dioxide</topic><topic>Powder metallurgy</topic><topic>Zn anode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Yang, Lizhuang</creatorcontrib><creatorcontrib>Wang, Haozhi</creatorcontrib><creatorcontrib>Cui, Bingfeng</creatorcontrib><creatorcontrib>Wang, Jingxian</creatorcontrib><creatorcontrib>Han, Xiaopeng</creatorcontrib><creatorcontrib>Hu, Wenbin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hong</au><au>Yang, Lizhuang</au><au>Wang, Haozhi</au><au>Cui, Bingfeng</au><au>Wang, Jingxian</au><au>Han, Xiaopeng</au><au>Hu, Wenbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bulk‐Phase Grain Boundaries Regulation Enables Highly Reversible Zn Anodes for Rechargeable Aqueous Zn‐Ion Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>34</volume><issue>11</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Dendrites and side reactions of Zn anodes severely restrict the application of aqueous Zn‐based batteries for grid‐scale energy storage. While surface/interface modification strategies have shown some progress in improving Zn anode reversibility, they still fall short in addressing the overall regulation and intrinsic mechanisms from the bulk‐phase perspective. Herein, a bulk‐phase composite Zn/CNTs anodes fabricated by a powder‐metallurgy‐based strategy is introduced. Benefiting from the regulation of grain boundary engineering on local electric conductivity, electric field distributions, and Zn atom absorption energy, the Zn/CNTs anodes effectively suppress dendrite growth and enhance corrosion resistance during Zn stripping/plating cycles. Symmetrical cells equipped with Zn/CNT4 anodes exhibit extended cycling stability with minimal voltage hysteresis (only 22 mV). Furthermore, the full cells incorporating Zn/CNT4 with commercial MnO2 demonstrate superior rate performance and specific capacitance retention after 500 h cycling. This breakthrough opens up new avenues for optimizing metallic anodes at the bulk phase level using powder metallurgy, enabling scalable manufacturing processes, and providing valuable insights for various metal anode systems. Distinctly different from the traditional surface/interface modification for the Zn anodes, this work provides a groundbreaking regulation perspective to achieve highly reversible zinc anode from bulk‐phase grain boundary optimization. Benefiting from grain boundary regulation with highly conductive CNTs, the bulk‐phase composite Zn/CNTs anodes exhibit substantial suppression of dendrite growth and enhanced corrosion resistance during Zn stripping/plating processes.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202312469</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7557-7133</orcidid><orcidid>https://orcid.org/0000-0002-6300-9403</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-03, Vol.34 (11), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2954785942
source Wiley Online Library All Journals
subjects Anodes
aqueous Zn‐ion battery
Batteries
bulk‐phase composite
Corrosion resistance
Cycles
Electric fields
Electrical resistivity
Energy storage
Grain boundaries
grain boundary modification
Manganese dioxide
Powder metallurgy
Zn anode
title Bulk‐Phase Grain Boundaries Regulation Enables Highly Reversible Zn Anodes for Rechargeable Aqueous Zn‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bulk%E2%80%90Phase%20Grain%20Boundaries%20Regulation%20Enables%20Highly%20Reversible%20Zn%20Anodes%20for%20Rechargeable%20Aqueous%20Zn%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhang,%20Hong&rft.date=2024-03-01&rft.volume=34&rft.issue=11&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202312469&rft_dat=%3Cproquest_cross%3E2954785942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2954785942&rft_id=info:pmid/&rfr_iscdi=true