A New Benchmark for Evaluating Automatic Speech Recognition in the Arabic Call Domain

This work is an attempt to introduce a comprehensive benchmark for Arabic speech recognition, specifically tailored to address the challenges of telephone conversations in Arabic language. Arabic, characterized by its rich dialectal diversity and phonetic complexity, presents a number of unique chal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Qusai Abo Obaidah, Muhy Eddin Za'ter, Jaljuli, Adnan, Mahboub, Ali, Hakouz, Asma, Alfrou, Bashar, Estaitia, Yazan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Qusai Abo Obaidah
Muhy Eddin Za'ter
Jaljuli, Adnan
Mahboub, Ali
Hakouz, Asma
Alfrou, Bashar
Estaitia, Yazan
description This work is an attempt to introduce a comprehensive benchmark for Arabic speech recognition, specifically tailored to address the challenges of telephone conversations in Arabic language. Arabic, characterized by its rich dialectal diversity and phonetic complexity, presents a number of unique challenges for automatic speech recognition (ASR) systems. These challenges are further amplified in the domain of telephone calls, where audio quality, background noise, and conversational speech styles negatively affect recognition accuracy. Our work aims to establish a robust benchmark that not only encompasses the broad spectrum of Arabic dialects but also emulates the real-world conditions of call-based communications. By incorporating diverse dialectical expressions and accounting for the variable quality of call recordings, this benchmark seeks to provide a rigorous testing ground for the development and evaluation of ASR systems capable of navigating the complexities of Arabic speech in telephonic contexts. This work also attempts to establish a baseline performance evaluation using state-of-the-art ASR technologies.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2953185071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2953185071</sourcerecordid><originalsourceid>FETCH-proquest_journals_29531850713</originalsourceid><addsrcrecordid>eNqNyr0OgjAYheHGxESi3MOXOJNAawVHRIyTgz8zqU2BYmmxLXr7MngBTudNzjNDASYkibINxgsUOtfFcYy3KaaUBOiew1l8YC80b3tmn1AbC-WbqZF5qRvIR2_6KTlcByF4CxfBTaOll0aD1OBbAblljwkUTCk4TFrqFZrXTDkR_naJ1sfyVpyiwZrXKJyvOjNaPV0V3lGSZDROE_Kf-gIkCj-n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2953185071</pqid></control><display><type>article</type><title>A New Benchmark for Evaluating Automatic Speech Recognition in the Arabic Call Domain</title><source>Free E- Journals</source><creator>Qusai Abo Obaidah ; Muhy Eddin Za'ter ; Jaljuli, Adnan ; Mahboub, Ali ; Hakouz, Asma ; Alfrou, Bashar ; Estaitia, Yazan</creator><creatorcontrib>Qusai Abo Obaidah ; Muhy Eddin Za'ter ; Jaljuli, Adnan ; Mahboub, Ali ; Hakouz, Asma ; Alfrou, Bashar ; Estaitia, Yazan</creatorcontrib><description>This work is an attempt to introduce a comprehensive benchmark for Arabic speech recognition, specifically tailored to address the challenges of telephone conversations in Arabic language. Arabic, characterized by its rich dialectal diversity and phonetic complexity, presents a number of unique challenges for automatic speech recognition (ASR) systems. These challenges are further amplified in the domain of telephone calls, where audio quality, background noise, and conversational speech styles negatively affect recognition accuracy. Our work aims to establish a robust benchmark that not only encompasses the broad spectrum of Arabic dialects but also emulates the real-world conditions of call-based communications. By incorporating diverse dialectical expressions and accounting for the variable quality of call recordings, this benchmark seeks to provide a rigorous testing ground for the development and evaluation of ASR systems capable of navigating the complexities of Arabic speech in telephonic contexts. This work also attempts to establish a baseline performance evaluation using state-of-the-art ASR technologies.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automatic speech recognition ; Background noise ; Benchmarks ; Performance evaluation ; State-of-the-art reviews ; Voice recognition</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Qusai Abo Obaidah</creatorcontrib><creatorcontrib>Muhy Eddin Za'ter</creatorcontrib><creatorcontrib>Jaljuli, Adnan</creatorcontrib><creatorcontrib>Mahboub, Ali</creatorcontrib><creatorcontrib>Hakouz, Asma</creatorcontrib><creatorcontrib>Alfrou, Bashar</creatorcontrib><creatorcontrib>Estaitia, Yazan</creatorcontrib><title>A New Benchmark for Evaluating Automatic Speech Recognition in the Arabic Call Domain</title><title>arXiv.org</title><description>This work is an attempt to introduce a comprehensive benchmark for Arabic speech recognition, specifically tailored to address the challenges of telephone conversations in Arabic language. Arabic, characterized by its rich dialectal diversity and phonetic complexity, presents a number of unique challenges for automatic speech recognition (ASR) systems. These challenges are further amplified in the domain of telephone calls, where audio quality, background noise, and conversational speech styles negatively affect recognition accuracy. Our work aims to establish a robust benchmark that not only encompasses the broad spectrum of Arabic dialects but also emulates the real-world conditions of call-based communications. By incorporating diverse dialectical expressions and accounting for the variable quality of call recordings, this benchmark seeks to provide a rigorous testing ground for the development and evaluation of ASR systems capable of navigating the complexities of Arabic speech in telephonic contexts. This work also attempts to establish a baseline performance evaluation using state-of-the-art ASR technologies.</description><subject>Automatic speech recognition</subject><subject>Background noise</subject><subject>Benchmarks</subject><subject>Performance evaluation</subject><subject>State-of-the-art reviews</subject><subject>Voice recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0OgjAYheHGxESi3MOXOJNAawVHRIyTgz8zqU2BYmmxLXr7MngBTudNzjNDASYkibINxgsUOtfFcYy3KaaUBOiew1l8YC80b3tmn1AbC-WbqZF5qRvIR2_6KTlcByF4CxfBTaOll0aD1OBbAblljwkUTCk4TFrqFZrXTDkR_naJ1sfyVpyiwZrXKJyvOjNaPV0V3lGSZDROE_Kf-gIkCj-n</recordid><startdate>20240307</startdate><enddate>20240307</enddate><creator>Qusai Abo Obaidah</creator><creator>Muhy Eddin Za'ter</creator><creator>Jaljuli, Adnan</creator><creator>Mahboub, Ali</creator><creator>Hakouz, Asma</creator><creator>Alfrou, Bashar</creator><creator>Estaitia, Yazan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240307</creationdate><title>A New Benchmark for Evaluating Automatic Speech Recognition in the Arabic Call Domain</title><author>Qusai Abo Obaidah ; Muhy Eddin Za'ter ; Jaljuli, Adnan ; Mahboub, Ali ; Hakouz, Asma ; Alfrou, Bashar ; Estaitia, Yazan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29531850713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic speech recognition</topic><topic>Background noise</topic><topic>Benchmarks</topic><topic>Performance evaluation</topic><topic>State-of-the-art reviews</topic><topic>Voice recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Qusai Abo Obaidah</creatorcontrib><creatorcontrib>Muhy Eddin Za'ter</creatorcontrib><creatorcontrib>Jaljuli, Adnan</creatorcontrib><creatorcontrib>Mahboub, Ali</creatorcontrib><creatorcontrib>Hakouz, Asma</creatorcontrib><creatorcontrib>Alfrou, Bashar</creatorcontrib><creatorcontrib>Estaitia, Yazan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qusai Abo Obaidah</au><au>Muhy Eddin Za'ter</au><au>Jaljuli, Adnan</au><au>Mahboub, Ali</au><au>Hakouz, Asma</au><au>Alfrou, Bashar</au><au>Estaitia, Yazan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A New Benchmark for Evaluating Automatic Speech Recognition in the Arabic Call Domain</atitle><jtitle>arXiv.org</jtitle><date>2024-03-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This work is an attempt to introduce a comprehensive benchmark for Arabic speech recognition, specifically tailored to address the challenges of telephone conversations in Arabic language. Arabic, characterized by its rich dialectal diversity and phonetic complexity, presents a number of unique challenges for automatic speech recognition (ASR) systems. These challenges are further amplified in the domain of telephone calls, where audio quality, background noise, and conversational speech styles negatively affect recognition accuracy. Our work aims to establish a robust benchmark that not only encompasses the broad spectrum of Arabic dialects but also emulates the real-world conditions of call-based communications. By incorporating diverse dialectical expressions and accounting for the variable quality of call recordings, this benchmark seeks to provide a rigorous testing ground for the development and evaluation of ASR systems capable of navigating the complexities of Arabic speech in telephonic contexts. This work also attempts to establish a baseline performance evaluation using state-of-the-art ASR technologies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2953185071
source Free E- Journals
subjects Automatic speech recognition
Background noise
Benchmarks
Performance evaluation
State-of-the-art reviews
Voice recognition
title A New Benchmark for Evaluating Automatic Speech Recognition in the Arabic Call Domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20New%20Benchmark%20for%20Evaluating%20Automatic%20Speech%20Recognition%20in%20the%20Arabic%20Call%20Domain&rft.jtitle=arXiv.org&rft.au=Qusai%20Abo%20Obaidah&rft.date=2024-03-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2953185071%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2953185071&rft_id=info:pmid/&rfr_iscdi=true