Artificial Hummingbird-Based Optimisation with Advanced Crowding Distance of Energy Reduction in the Polyethylene Reactors

Ethylene is polymerised by free radicals under extreme conditions of high pressure and temperature to produce low-density polyethylene LDPE. Considering the requirement for high compression power and heating–cooling elements, combined with depleting fossil fuel and climate change issues, an approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Process integration and optimization for sustainability 2024-03, Vol.8 (1), p.271-284
Hauptverfasser: Rohman, Fakhrony Sholahudin, Alwi, Sharifah Rafidah Wan, Muhammad, Dinie, Idris, Iylia, Zahan, Khairul Azly, Murat, Muhamad Nazri, Azmi, Ashraf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 1
container_start_page 271
container_title Process integration and optimization for sustainability
container_volume 8
creator Rohman, Fakhrony Sholahudin
Alwi, Sharifah Rafidah Wan
Muhammad, Dinie
Idris, Iylia
Zahan, Khairul Azly
Murat, Muhamad Nazri
Azmi, Ashraf
description Ethylene is polymerised by free radicals under extreme conditions of high pressure and temperature to produce low-density polyethylene LDPE. Considering the requirement for high compression power and heating–cooling elements, combined with depleting fossil fuel and climate change issues, an approach is needed to trade-off these issues. As such, an effective approach of multi-objective optimisation study to obtain the optimum production of the LDPE with minimum energy consumption is proposed in this work. The multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance (MOAHA-DECD) executes within ASPEN Plus–MATLAB environment for energy saving of low-density polyethylene (LDPE) production. Three problems are addressed: minimise energy cost and maximise productivity for problem 1 (P1); minimising energy cost and maximising conversion for problem 2 (P2); and minimising energy cost, maximising productivity, and maximising conversion for problem 3 (P3). The inlet pressure, the mass flow rate of Initiator 1 (tert-butyl peroxypivalate, TBPPI), and the mass flow rate of Initiator 2 (tert-butyl 3,5,5trimethyl-peroxyhexaonate (TBPIN)) of the reacting zones (zone 3 and zone 5) are considered as decision variables. Pareto solutions obtained are arrayed across the entire Pareto front (PF) with an even sweep and diverse points. Based on the results, the highest productivity, lowest energy cost, and highest conversion are 554.958 Mil. RM/year, 61.388 Mil. RM/year, and 0.320. The decision variable plots show that the mass flow rate of the initiator at the end zone of the reactor highly impacts the optimal option. For the next study, the generated Pareto allows decision-makers to select the most acceptable solution based on their preferences to trade-off economic, energy, and environmental issues.
doi_str_mv 10.1007/s41660-023-00369-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2952448070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2952448070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9a18c920999b8efd8fbc762c487b00911bbb3e10b4354a69c440f95fbfd91bda3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQxxdRsNR-AU8Bz6uTxz5yrLVaoVARPYckm7Qp292apJb107ttRW-eZpj_Y-CXJNcYbjFAcRcYznNIgdAUgOY8hbNkQDLgKSMsP__daXmZjEJYAwApKCuBDZKvsY_OOu1kjWa7zcY1S-V8ld7LYCq02Ea3cUFG1zZo7-IKjatP2ehemvh2X_Vu9OBCPJxQa9G0MX7ZoVdT7fQx4xoUVwa9tHVn4qqrTWN6VerY-nCVXFhZBzP6mcPk_XH6Npml88XT82Q8TzXFPKZc4lJzApxzVRpblVbpIiealYUC4BgrpajBoBjNmMy5Zgwsz6yyFceqknSY3Jx6t7792JkQxbrd-aZ_KQjPCOtBFNC7yMmlfRuCN1ZsvdtI3wkM4oBZnDCLHrM4YhaHED2FQm9ulsb_Vf-T-gb0gIGs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2952448070</pqid></control><display><type>article</type><title>Artificial Hummingbird-Based Optimisation with Advanced Crowding Distance of Energy Reduction in the Polyethylene Reactors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rohman, Fakhrony Sholahudin ; Alwi, Sharifah Rafidah Wan ; Muhammad, Dinie ; Idris, Iylia ; Zahan, Khairul Azly ; Murat, Muhamad Nazri ; Azmi, Ashraf</creator><creatorcontrib>Rohman, Fakhrony Sholahudin ; Alwi, Sharifah Rafidah Wan ; Muhammad, Dinie ; Idris, Iylia ; Zahan, Khairul Azly ; Murat, Muhamad Nazri ; Azmi, Ashraf</creatorcontrib><description>Ethylene is polymerised by free radicals under extreme conditions of high pressure and temperature to produce low-density polyethylene LDPE. Considering the requirement for high compression power and heating–cooling elements, combined with depleting fossil fuel and climate change issues, an approach is needed to trade-off these issues. As such, an effective approach of multi-objective optimisation study to obtain the optimum production of the LDPE with minimum energy consumption is proposed in this work. The multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance (MOAHA-DECD) executes within ASPEN Plus–MATLAB environment for energy saving of low-density polyethylene (LDPE) production. Three problems are addressed: minimise energy cost and maximise productivity for problem 1 (P1); minimising energy cost and maximising conversion for problem 2 (P2); and minimising energy cost, maximising productivity, and maximising conversion for problem 3 (P3). The inlet pressure, the mass flow rate of Initiator 1 (tert-butyl peroxypivalate, TBPPI), and the mass flow rate of Initiator 2 (tert-butyl 3,5,5trimethyl-peroxyhexaonate (TBPIN)) of the reacting zones (zone 3 and zone 5) are considered as decision variables. Pareto solutions obtained are arrayed across the entire Pareto front (PF) with an even sweep and diverse points. Based on the results, the highest productivity, lowest energy cost, and highest conversion are 554.958 Mil. RM/year, 61.388 Mil. RM/year, and 0.320. The decision variable plots show that the mass flow rate of the initiator at the end zone of the reactor highly impacts the optimal option. For the next study, the generated Pareto allows decision-makers to select the most acceptable solution based on their preferences to trade-off economic, energy, and environmental issues.</description><identifier>ISSN: 2509-4238</identifier><identifier>EISSN: 2509-4246</identifier><identifier>DOI: 10.1007/s41660-023-00369-0</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Algorithms ; Archives &amp; records ; Climate change ; Cooling ; Cooling systems ; Crowding ; Density ; Economics and Management ; Energy conservation ; Energy consumption ; Energy costs ; Energy Policy ; Engineering ; Flow rates ; Fossil fuels ; Free radical polymerization ; Free radicals ; High pressure ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Initiators ; Inlet pressure ; Linear programming ; Low density polyethylenes ; Mass flow rate ; Maximization ; Multiple objective analysis ; Original Research Paper ; Pareto optimization ; Pareto optimum ; Polyethylene ; Polymers ; Productivity ; Reactors ; Sustainable Development ; Temperature requirements ; Tradeoffs ; Variables ; Waste Management/Waste Technology</subject><ispartof>Process integration and optimization for sustainability, 2024-03, Vol.8 (1), p.271-284</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9a18c920999b8efd8fbc762c487b00911bbb3e10b4354a69c440f95fbfd91bda3</citedby><cites>FETCH-LOGICAL-c319t-9a18c920999b8efd8fbc762c487b00911bbb3e10b4354a69c440f95fbfd91bda3</cites><orcidid>0000-0003-1030-4350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s41660-023-00369-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s41660-023-00369-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Rohman, Fakhrony Sholahudin</creatorcontrib><creatorcontrib>Alwi, Sharifah Rafidah Wan</creatorcontrib><creatorcontrib>Muhammad, Dinie</creatorcontrib><creatorcontrib>Idris, Iylia</creatorcontrib><creatorcontrib>Zahan, Khairul Azly</creatorcontrib><creatorcontrib>Murat, Muhamad Nazri</creatorcontrib><creatorcontrib>Azmi, Ashraf</creatorcontrib><title>Artificial Hummingbird-Based Optimisation with Advanced Crowding Distance of Energy Reduction in the Polyethylene Reactors</title><title>Process integration and optimization for sustainability</title><addtitle>Process Integr Optim Sustain</addtitle><description>Ethylene is polymerised by free radicals under extreme conditions of high pressure and temperature to produce low-density polyethylene LDPE. Considering the requirement for high compression power and heating–cooling elements, combined with depleting fossil fuel and climate change issues, an approach is needed to trade-off these issues. As such, an effective approach of multi-objective optimisation study to obtain the optimum production of the LDPE with minimum energy consumption is proposed in this work. The multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance (MOAHA-DECD) executes within ASPEN Plus–MATLAB environment for energy saving of low-density polyethylene (LDPE) production. Three problems are addressed: minimise energy cost and maximise productivity for problem 1 (P1); minimising energy cost and maximising conversion for problem 2 (P2); and minimising energy cost, maximising productivity, and maximising conversion for problem 3 (P3). The inlet pressure, the mass flow rate of Initiator 1 (tert-butyl peroxypivalate, TBPPI), and the mass flow rate of Initiator 2 (tert-butyl 3,5,5trimethyl-peroxyhexaonate (TBPIN)) of the reacting zones (zone 3 and zone 5) are considered as decision variables. Pareto solutions obtained are arrayed across the entire Pareto front (PF) with an even sweep and diverse points. Based on the results, the highest productivity, lowest energy cost, and highest conversion are 554.958 Mil. RM/year, 61.388 Mil. RM/year, and 0.320. The decision variable plots show that the mass flow rate of the initiator at the end zone of the reactor highly impacts the optimal option. For the next study, the generated Pareto allows decision-makers to select the most acceptable solution based on their preferences to trade-off economic, energy, and environmental issues.</description><subject>Algorithms</subject><subject>Archives &amp; records</subject><subject>Climate change</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Crowding</subject><subject>Density</subject><subject>Economics and Management</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy costs</subject><subject>Energy Policy</subject><subject>Engineering</subject><subject>Flow rates</subject><subject>Fossil fuels</subject><subject>Free radical polymerization</subject><subject>Free radicals</subject><subject>High pressure</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Initiators</subject><subject>Inlet pressure</subject><subject>Linear programming</subject><subject>Low density polyethylenes</subject><subject>Mass flow rate</subject><subject>Maximization</subject><subject>Multiple objective analysis</subject><subject>Original Research Paper</subject><subject>Pareto optimization</subject><subject>Pareto optimum</subject><subject>Polyethylene</subject><subject>Polymers</subject><subject>Productivity</subject><subject>Reactors</subject><subject>Sustainable Development</subject><subject>Temperature requirements</subject><subject>Tradeoffs</subject><subject>Variables</subject><subject>Waste Management/Waste Technology</subject><issn>2509-4238</issn><issn>2509-4246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQxxdRsNR-AU8Bz6uTxz5yrLVaoVARPYckm7Qp292apJb107ttRW-eZpj_Y-CXJNcYbjFAcRcYznNIgdAUgOY8hbNkQDLgKSMsP__daXmZjEJYAwApKCuBDZKvsY_OOu1kjWa7zcY1S-V8ld7LYCq02Ea3cUFG1zZo7-IKjatP2ehemvh2X_Vu9OBCPJxQa9G0MX7ZoVdT7fQx4xoUVwa9tHVn4qqrTWN6VerY-nCVXFhZBzP6mcPk_XH6Npml88XT82Q8TzXFPKZc4lJzApxzVRpblVbpIiealYUC4BgrpajBoBjNmMy5Zgwsz6yyFceqknSY3Jx6t7792JkQxbrd-aZ_KQjPCOtBFNC7yMmlfRuCN1ZsvdtI3wkM4oBZnDCLHrM4YhaHED2FQm9ulsb_Vf-T-gb0gIGs</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Rohman, Fakhrony Sholahudin</creator><creator>Alwi, Sharifah Rafidah Wan</creator><creator>Muhammad, Dinie</creator><creator>Idris, Iylia</creator><creator>Zahan, Khairul Azly</creator><creator>Murat, Muhamad Nazri</creator><creator>Azmi, Ashraf</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1030-4350</orcidid></search><sort><creationdate>20240301</creationdate><title>Artificial Hummingbird-Based Optimisation with Advanced Crowding Distance of Energy Reduction in the Polyethylene Reactors</title><author>Rohman, Fakhrony Sholahudin ; Alwi, Sharifah Rafidah Wan ; Muhammad, Dinie ; Idris, Iylia ; Zahan, Khairul Azly ; Murat, Muhamad Nazri ; Azmi, Ashraf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9a18c920999b8efd8fbc762c487b00911bbb3e10b4354a69c440f95fbfd91bda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Archives &amp; records</topic><topic>Climate change</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Crowding</topic><topic>Density</topic><topic>Economics and Management</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy costs</topic><topic>Energy Policy</topic><topic>Engineering</topic><topic>Flow rates</topic><topic>Fossil fuels</topic><topic>Free radical polymerization</topic><topic>Free radicals</topic><topic>High pressure</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Initiators</topic><topic>Inlet pressure</topic><topic>Linear programming</topic><topic>Low density polyethylenes</topic><topic>Mass flow rate</topic><topic>Maximization</topic><topic>Multiple objective analysis</topic><topic>Original Research Paper</topic><topic>Pareto optimization</topic><topic>Pareto optimum</topic><topic>Polyethylene</topic><topic>Polymers</topic><topic>Productivity</topic><topic>Reactors</topic><topic>Sustainable Development</topic><topic>Temperature requirements</topic><topic>Tradeoffs</topic><topic>Variables</topic><topic>Waste Management/Waste Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohman, Fakhrony Sholahudin</creatorcontrib><creatorcontrib>Alwi, Sharifah Rafidah Wan</creatorcontrib><creatorcontrib>Muhammad, Dinie</creatorcontrib><creatorcontrib>Idris, Iylia</creatorcontrib><creatorcontrib>Zahan, Khairul Azly</creatorcontrib><creatorcontrib>Murat, Muhamad Nazri</creatorcontrib><creatorcontrib>Azmi, Ashraf</creatorcontrib><collection>CrossRef</collection><jtitle>Process integration and optimization for sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohman, Fakhrony Sholahudin</au><au>Alwi, Sharifah Rafidah Wan</au><au>Muhammad, Dinie</au><au>Idris, Iylia</au><au>Zahan, Khairul Azly</au><au>Murat, Muhamad Nazri</au><au>Azmi, Ashraf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Hummingbird-Based Optimisation with Advanced Crowding Distance of Energy Reduction in the Polyethylene Reactors</atitle><jtitle>Process integration and optimization for sustainability</jtitle><stitle>Process Integr Optim Sustain</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>8</volume><issue>1</issue><spage>271</spage><epage>284</epage><pages>271-284</pages><issn>2509-4238</issn><eissn>2509-4246</eissn><abstract>Ethylene is polymerised by free radicals under extreme conditions of high pressure and temperature to produce low-density polyethylene LDPE. Considering the requirement for high compression power and heating–cooling elements, combined with depleting fossil fuel and climate change issues, an approach is needed to trade-off these issues. As such, an effective approach of multi-objective optimisation study to obtain the optimum production of the LDPE with minimum energy consumption is proposed in this work. The multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance (MOAHA-DECD) executes within ASPEN Plus–MATLAB environment for energy saving of low-density polyethylene (LDPE) production. Three problems are addressed: minimise energy cost and maximise productivity for problem 1 (P1); minimising energy cost and maximising conversion for problem 2 (P2); and minimising energy cost, maximising productivity, and maximising conversion for problem 3 (P3). The inlet pressure, the mass flow rate of Initiator 1 (tert-butyl peroxypivalate, TBPPI), and the mass flow rate of Initiator 2 (tert-butyl 3,5,5trimethyl-peroxyhexaonate (TBPIN)) of the reacting zones (zone 3 and zone 5) are considered as decision variables. Pareto solutions obtained are arrayed across the entire Pareto front (PF) with an even sweep and diverse points. Based on the results, the highest productivity, lowest energy cost, and highest conversion are 554.958 Mil. RM/year, 61.388 Mil. RM/year, and 0.320. The decision variable plots show that the mass flow rate of the initiator at the end zone of the reactor highly impacts the optimal option. For the next study, the generated Pareto allows decision-makers to select the most acceptable solution based on their preferences to trade-off economic, energy, and environmental issues.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s41660-023-00369-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1030-4350</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2509-4238
ispartof Process integration and optimization for sustainability, 2024-03, Vol.8 (1), p.271-284
issn 2509-4238
2509-4246
language eng
recordid cdi_proquest_journals_2952448070
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Archives & records
Climate change
Cooling
Cooling systems
Crowding
Density
Economics and Management
Energy conservation
Energy consumption
Energy costs
Energy Policy
Engineering
Flow rates
Fossil fuels
Free radical polymerization
Free radicals
High pressure
Industrial and Production Engineering
Industrial Chemistry/Chemical Engineering
Initiators
Inlet pressure
Linear programming
Low density polyethylenes
Mass flow rate
Maximization
Multiple objective analysis
Original Research Paper
Pareto optimization
Pareto optimum
Polyethylene
Polymers
Productivity
Reactors
Sustainable Development
Temperature requirements
Tradeoffs
Variables
Waste Management/Waste Technology
title Artificial Hummingbird-Based Optimisation with Advanced Crowding Distance of Energy Reduction in the Polyethylene Reactors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Hummingbird-Based%20Optimisation%20with%20Advanced%20Crowding%20Distance%20of%20Energy%20Reduction%20in%20the%20Polyethylene%20Reactors&rft.jtitle=Process%20integration%20and%20optimization%20for%20sustainability&rft.au=Rohman,%20Fakhrony%20Sholahudin&rft.date=2024-03-01&rft.volume=8&rft.issue=1&rft.spage=271&rft.epage=284&rft.pages=271-284&rft.issn=2509-4238&rft.eissn=2509-4246&rft_id=info:doi/10.1007/s41660-023-00369-0&rft_dat=%3Cproquest_cross%3E2952448070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2952448070&rft_id=info:pmid/&rfr_iscdi=true