Real-time endoscopy haze removal: a synthetical method

In endoscopic surgeries, the smoke and haze generated by temperature difference and electrosurgical knife usage degrades the surgical view. While many researches on natural single image haze removal being proposed, few works are done for video haze removal of endoscopy view. In this paper, we propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2024-03, Vol.83 (11), p.31195-31209
Hauptverfasser: Zhuo, Xu, Yang, Chenbin, Gao, Yuming, Wang, Zhihua, Chen, Yang, Wu, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31209
container_issue 11
container_start_page 31195
container_title Multimedia tools and applications
container_volume 83
creator Zhuo, Xu
Yang, Chenbin
Gao, Yuming
Wang, Zhihua
Chen, Yang
Wu, Ke
description In endoscopic surgeries, the smoke and haze generated by temperature difference and electrosurgical knife usage degrades the surgical view. While many researches on natural single image haze removal being proposed, few works are done for video haze removal of endoscopy view. In this paper, we proposed a synthetical method for endoscopy haze removal combining a Refined Dark Channel Prior (RDCP), Spatial-Temporal Markov Random Field (STMRF), Color Attenuation Prior (CAP) and parameter self-adaption. Qualitative and quantitative experiment results outperformed some traditional and deep learning based methods. Our proposed method is an effective and practical one.
doi_str_mv 10.1007/s11042-023-16375-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2952194147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2952194147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c4e758bf77e462216e2c95fc8a1e1ee29d280f72e6e5c2e3195ff1bb95fd95e93</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKd_wKeCz9Hc26ZZfZOhUxgIos8hS29tR9vMpHPMX2-0gj75dA7cc86Fj7FzEJcghLoKACJDLjDlkKdK8t0Bm4BUKVcK4fCPP2YnIayFgFxiNmH5E5mWD01HCfWlC9Zt9kltPijx1Ll3014nJgn7fqhpaKxpk46G2pWn7KgybaCzH52yl7vb5_k9Xz4uHuY3S25RiYHbjJScrSqlKMsRISe0hazszAABERYlzkSlkHKSFimFeKxgtYpSFpKKdMouxt2Nd29bCoNeu63v40uNhUQoMshUTOGYst6F4KnSG990xu81CP3FR498dOSjv_noXSylYynEcP9K_nf6n9YncTBoZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2952194147</pqid></control><display><type>article</type><title>Real-time endoscopy haze removal: a synthetical method</title><source>SpringerLink Journals</source><creator>Zhuo, Xu ; Yang, Chenbin ; Gao, Yuming ; Wang, Zhihua ; Chen, Yang ; Wu, Ke</creator><creatorcontrib>Zhuo, Xu ; Yang, Chenbin ; Gao, Yuming ; Wang, Zhihua ; Chen, Yang ; Wu, Ke</creatorcontrib><description>In endoscopic surgeries, the smoke and haze generated by temperature difference and electrosurgical knife usage degrades the surgical view. While many researches on natural single image haze removal being proposed, few works are done for video haze removal of endoscopy view. In this paper, we proposed a synthetical method for endoscopy haze removal combining a Refined Dark Channel Prior (RDCP), Spatial-Temporal Markov Random Field (STMRF), Color Attenuation Prior (CAP) and parameter self-adaption. Qualitative and quantitative experiment results outperformed some traditional and deep learning based methods. Our proposed method is an effective and practical one.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-16375-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Datasets ; Deep learning ; Endoscopy ; Fields (mathematics) ; Haze ; Light ; Medical research ; Methods ; Multimedia ; Multimedia Information Systems ; Neural networks ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2024-03, Vol.83 (11), p.31195-31209</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c4e758bf77e462216e2c95fc8a1e1ee29d280f72e6e5c2e3195ff1bb95fd95e93</cites><orcidid>0000-0002-5660-6349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-16375-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-16375-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhuo, Xu</creatorcontrib><creatorcontrib>Yang, Chenbin</creatorcontrib><creatorcontrib>Gao, Yuming</creatorcontrib><creatorcontrib>Wang, Zhihua</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Wu, Ke</creatorcontrib><title>Real-time endoscopy haze removal: a synthetical method</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In endoscopic surgeries, the smoke and haze generated by temperature difference and electrosurgical knife usage degrades the surgical view. While many researches on natural single image haze removal being proposed, few works are done for video haze removal of endoscopy view. In this paper, we proposed a synthetical method for endoscopy haze removal combining a Refined Dark Channel Prior (RDCP), Spatial-Temporal Markov Random Field (STMRF), Color Attenuation Prior (CAP) and parameter self-adaption. Qualitative and quantitative experiment results outperformed some traditional and deep learning based methods. Our proposed method is an effective and practical one.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Endoscopy</subject><subject>Fields (mathematics)</subject><subject>Haze</subject><subject>Light</subject><subject>Medical research</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKd_wKeCz9Hc26ZZfZOhUxgIos8hS29tR9vMpHPMX2-0gj75dA7cc86Fj7FzEJcghLoKACJDLjDlkKdK8t0Bm4BUKVcK4fCPP2YnIayFgFxiNmH5E5mWD01HCfWlC9Zt9kltPijx1Ll3014nJgn7fqhpaKxpk46G2pWn7KgybaCzH52yl7vb5_k9Xz4uHuY3S25RiYHbjJScrSqlKMsRISe0hazszAABERYlzkSlkHKSFimFeKxgtYpSFpKKdMouxt2Nd29bCoNeu63v40uNhUQoMshUTOGYst6F4KnSG990xu81CP3FR498dOSjv_noXSylYynEcP9K_nf6n9YncTBoZg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zhuo, Xu</creator><creator>Yang, Chenbin</creator><creator>Gao, Yuming</creator><creator>Wang, Zhihua</creator><creator>Chen, Yang</creator><creator>Wu, Ke</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5660-6349</orcidid></search><sort><creationdate>20240301</creationdate><title>Real-time endoscopy haze removal: a synthetical method</title><author>Zhuo, Xu ; Yang, Chenbin ; Gao, Yuming ; Wang, Zhihua ; Chen, Yang ; Wu, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c4e758bf77e462216e2c95fc8a1e1ee29d280f72e6e5c2e3195ff1bb95fd95e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Endoscopy</topic><topic>Fields (mathematics)</topic><topic>Haze</topic><topic>Light</topic><topic>Medical research</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuo, Xu</creatorcontrib><creatorcontrib>Yang, Chenbin</creatorcontrib><creatorcontrib>Gao, Yuming</creatorcontrib><creatorcontrib>Wang, Zhihua</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Wu, Ke</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuo, Xu</au><au>Yang, Chenbin</au><au>Gao, Yuming</au><au>Wang, Zhihua</au><au>Chen, Yang</au><au>Wu, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time endoscopy haze removal: a synthetical method</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>83</volume><issue>11</issue><spage>31195</spage><epage>31209</epage><pages>31195-31209</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In endoscopic surgeries, the smoke and haze generated by temperature difference and electrosurgical knife usage degrades the surgical view. While many researches on natural single image haze removal being proposed, few works are done for video haze removal of endoscopy view. In this paper, we proposed a synthetical method for endoscopy haze removal combining a Refined Dark Channel Prior (RDCP), Spatial-Temporal Markov Random Field (STMRF), Color Attenuation Prior (CAP) and parameter self-adaption. Qualitative and quantitative experiment results outperformed some traditional and deep learning based methods. Our proposed method is an effective and practical one.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-16375-w</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5660-6349</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1573-7721
ispartof Multimedia tools and applications, 2024-03, Vol.83 (11), p.31195-31209
issn 1573-7721
1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2952194147
source SpringerLink Journals
subjects Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Deep learning
Endoscopy
Fields (mathematics)
Haze
Light
Medical research
Methods
Multimedia
Multimedia Information Systems
Neural networks
Special Purpose and Application-Based Systems
title Real-time endoscopy haze removal: a synthetical method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20endoscopy%20haze%20removal:%20a%20synthetical%20method&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Zhuo,%20Xu&rft.date=2024-03-01&rft.volume=83&rft.issue=11&rft.spage=31195&rft.epage=31209&rft.pages=31195-31209&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-16375-w&rft_dat=%3Cproquest_cross%3E2952194147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2952194147&rft_id=info:pmid/&rfr_iscdi=true