Real-time endoscopy haze removal: a synthetical method
In endoscopic surgeries, the smoke and haze generated by temperature difference and electrosurgical knife usage degrades the surgical view. While many researches on natural single image haze removal being proposed, few works are done for video haze removal of endoscopy view. In this paper, we propos...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2024-03, Vol.83 (11), p.31195-31209 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31209 |
---|---|
container_issue | 11 |
container_start_page | 31195 |
container_title | Multimedia tools and applications |
container_volume | 83 |
creator | Zhuo, Xu Yang, Chenbin Gao, Yuming Wang, Zhihua Chen, Yang Wu, Ke |
description | In endoscopic surgeries, the smoke and haze generated by temperature difference and electrosurgical knife usage degrades the surgical view. While many researches on natural single image haze removal being proposed, few works are done for video haze removal of endoscopy view. In this paper, we proposed a synthetical method for endoscopy haze removal combining a
Refined Dark Channel Prior
(RDCP),
Spatial-Temporal Markov Random Field
(STMRF),
Color Attenuation Prior
(CAP) and parameter self-adaption. Qualitative and quantitative experiment results outperformed some traditional and deep learning based methods. Our proposed method is an effective and practical one. |
doi_str_mv | 10.1007/s11042-023-16375-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2952194147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2952194147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c4e758bf77e462216e2c95fc8a1e1ee29d280f72e6e5c2e3195ff1bb95fd95e93</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKd_wKeCz9Hc26ZZfZOhUxgIos8hS29tR9vMpHPMX2-0gj75dA7cc86Fj7FzEJcghLoKACJDLjDlkKdK8t0Bm4BUKVcK4fCPP2YnIayFgFxiNmH5E5mWD01HCfWlC9Zt9kltPijx1Ll3014nJgn7fqhpaKxpk46G2pWn7KgybaCzH52yl7vb5_k9Xz4uHuY3S25RiYHbjJScrSqlKMsRISe0hazszAABERYlzkSlkHKSFimFeKxgtYpSFpKKdMouxt2Nd29bCoNeu63v40uNhUQoMshUTOGYst6F4KnSG990xu81CP3FR498dOSjv_noXSylYynEcP9K_nf6n9YncTBoZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2952194147</pqid></control><display><type>article</type><title>Real-time endoscopy haze removal: a synthetical method</title><source>SpringerLink Journals</source><creator>Zhuo, Xu ; Yang, Chenbin ; Gao, Yuming ; Wang, Zhihua ; Chen, Yang ; Wu, Ke</creator><creatorcontrib>Zhuo, Xu ; Yang, Chenbin ; Gao, Yuming ; Wang, Zhihua ; Chen, Yang ; Wu, Ke</creatorcontrib><description>In endoscopic surgeries, the smoke and haze generated by temperature difference and electrosurgical knife usage degrades the surgical view. While many researches on natural single image haze removal being proposed, few works are done for video haze removal of endoscopy view. In this paper, we proposed a synthetical method for endoscopy haze removal combining a
Refined Dark Channel Prior
(RDCP),
Spatial-Temporal Markov Random Field
(STMRF),
Color Attenuation Prior
(CAP) and parameter self-adaption. Qualitative and quantitative experiment results outperformed some traditional and deep learning based methods. Our proposed method is an effective and practical one.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-16375-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Datasets ; Deep learning ; Endoscopy ; Fields (mathematics) ; Haze ; Light ; Medical research ; Methods ; Multimedia ; Multimedia Information Systems ; Neural networks ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2024-03, Vol.83 (11), p.31195-31209</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c4e758bf77e462216e2c95fc8a1e1ee29d280f72e6e5c2e3195ff1bb95fd95e93</cites><orcidid>0000-0002-5660-6349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-16375-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-16375-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhuo, Xu</creatorcontrib><creatorcontrib>Yang, Chenbin</creatorcontrib><creatorcontrib>Gao, Yuming</creatorcontrib><creatorcontrib>Wang, Zhihua</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Wu, Ke</creatorcontrib><title>Real-time endoscopy haze removal: a synthetical method</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In endoscopic surgeries, the smoke and haze generated by temperature difference and electrosurgical knife usage degrades the surgical view. While many researches on natural single image haze removal being proposed, few works are done for video haze removal of endoscopy view. In this paper, we proposed a synthetical method for endoscopy haze removal combining a
Refined Dark Channel Prior
(RDCP),
Spatial-Temporal Markov Random Field
(STMRF),
Color Attenuation Prior
(CAP) and parameter self-adaption. Qualitative and quantitative experiment results outperformed some traditional and deep learning based methods. Our proposed method is an effective and practical one.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Endoscopy</subject><subject>Fields (mathematics)</subject><subject>Haze</subject><subject>Light</subject><subject>Medical research</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKd_wKeCz9Hc26ZZfZOhUxgIos8hS29tR9vMpHPMX2-0gj75dA7cc86Fj7FzEJcghLoKACJDLjDlkKdK8t0Bm4BUKVcK4fCPP2YnIayFgFxiNmH5E5mWD01HCfWlC9Zt9kltPijx1Ll3014nJgn7fqhpaKxpk46G2pWn7KgybaCzH52yl7vb5_k9Xz4uHuY3S25RiYHbjJScrSqlKMsRISe0hazszAABERYlzkSlkHKSFimFeKxgtYpSFpKKdMouxt2Nd29bCoNeu63v40uNhUQoMshUTOGYst6F4KnSG990xu81CP3FR498dOSjv_noXSylYynEcP9K_nf6n9YncTBoZg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zhuo, Xu</creator><creator>Yang, Chenbin</creator><creator>Gao, Yuming</creator><creator>Wang, Zhihua</creator><creator>Chen, Yang</creator><creator>Wu, Ke</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5660-6349</orcidid></search><sort><creationdate>20240301</creationdate><title>Real-time endoscopy haze removal: a synthetical method</title><author>Zhuo, Xu ; Yang, Chenbin ; Gao, Yuming ; Wang, Zhihua ; Chen, Yang ; Wu, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c4e758bf77e462216e2c95fc8a1e1ee29d280f72e6e5c2e3195ff1bb95fd95e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Endoscopy</topic><topic>Fields (mathematics)</topic><topic>Haze</topic><topic>Light</topic><topic>Medical research</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuo, Xu</creatorcontrib><creatorcontrib>Yang, Chenbin</creatorcontrib><creatorcontrib>Gao, Yuming</creatorcontrib><creatorcontrib>Wang, Zhihua</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Wu, Ke</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuo, Xu</au><au>Yang, Chenbin</au><au>Gao, Yuming</au><au>Wang, Zhihua</au><au>Chen, Yang</au><au>Wu, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time endoscopy haze removal: a synthetical method</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>83</volume><issue>11</issue><spage>31195</spage><epage>31209</epage><pages>31195-31209</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In endoscopic surgeries, the smoke and haze generated by temperature difference and electrosurgical knife usage degrades the surgical view. While many researches on natural single image haze removal being proposed, few works are done for video haze removal of endoscopy view. In this paper, we proposed a synthetical method for endoscopy haze removal combining a
Refined Dark Channel Prior
(RDCP),
Spatial-Temporal Markov Random Field
(STMRF),
Color Attenuation Prior
(CAP) and parameter self-adaption. Qualitative and quantitative experiment results outperformed some traditional and deep learning based methods. Our proposed method is an effective and practical one.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-16375-w</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5660-6349</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-7721 |
ispartof | Multimedia tools and applications, 2024-03, Vol.83 (11), p.31195-31209 |
issn | 1573-7721 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2952194147 |
source | SpringerLink Journals |
subjects | Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Deep learning Endoscopy Fields (mathematics) Haze Light Medical research Methods Multimedia Multimedia Information Systems Neural networks Special Purpose and Application-Based Systems |
title | Real-time endoscopy haze removal: a synthetical method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20endoscopy%20haze%20removal:%20a%20synthetical%20method&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Zhuo,%20Xu&rft.date=2024-03-01&rft.volume=83&rft.issue=11&rft.spage=31195&rft.epage=31209&rft.pages=31195-31209&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-16375-w&rft_dat=%3Cproquest_cross%3E2952194147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2952194147&rft_id=info:pmid/&rfr_iscdi=true |