Precursor Engineering of Solution‐Processed Sb2S3 Solar Cells
Antimony‐based chalcogenides have emerged as promising candidates for next‐generation thin film photovoltaics. Particularly, binary Sb2S3 thin films have exhibited great potential for optoelectronic applications, due to the facile and low‐cost fabrication, simple composition, decent charge transport...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-03, Vol.20 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Li, Yanyan Li, Ruiming Jia, Zhenglin Yu, Bin Yang, Yujie Bai, Songxue Pollard, Michael Liu, Yong Ma, Ye Kampwerth, Henner Lin, Qianqian |
description | Antimony‐based chalcogenides have emerged as promising candidates for next‐generation thin film photovoltaics. Particularly, binary Sb2S3 thin films have exhibited great potential for optoelectronic applications, due to the facile and low‐cost fabrication, simple composition, decent charge transport and superior stability. However, most of the reported efficient Sb2S3 solar cells are realized based on chemical bath deposition and hydrothermal methods, which require large amount of solution and are normally very time‐consuming. In this work, Ag ions are introduced within the Sb2S3 sol‐gel precursors, and effectively modulated the crystallization and charge transport properties of Sb2S3. The crystallinity of the Sb2S3 crystal grains are enhanced and the charge carrier mobility is increased, which resulted improved charge collection efficiency and reduced charge recombination losses, reflected by the greatly improved fill factor and open‐circuit voltage of the Ag incorporated Sb2S3 solar cells. The champion devices reached a record high power conversion efficiency of 7.73% (with antireflection coating), which is comparable with the best photovoltaic performance of Sb2S3 solar cells achieved based on chemical bath deposition and hydrothermal techniques, and pave the great avenue for next‐generation solution‐processed photovoltaics.
Solution‐processed Sb2S3 solar cells are achieved via a precursor route. Ag ions is introduced to modulate the crystallization and optoelectronic properties of the antimony sulfide thin films, and the optimized devices exhibited remarkably enhanced photovoltaic performance due to the significantly enhanced charge transport and reduced disorderness. |
doi_str_mv | 10.1002/smll.202308895 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2950915756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2950915756</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2335-79a89d28faedc4b6c6327a5e7799737f5a03deb52a7d98252a070be3a653c4e83</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKevPhd87kxylyZ5EhlzChUH1eeQtrejI2tmsiJ78yf4G_0lbkz6dO7hHO6Bj5BbRieMUn4fN85NOOVAldLijIxYxiDNFNfnw83oJbmKcU0pMD6VI_KwDFj1IfqQzLtV2yGGtlslvkkK7_pd67vf759l8BXGiHVSlLyAY2RDMkPn4jW5aKyLePOvY_LxNH-fPaf52-Jl9pinWw4gUqmt0jVXjcW6mpZZlQGXVqCUWkuQjbAUaiwFt7LWih-USloi2ExANUUFY3J3-rsN_rPHuDNr34fuMGm4FlQzIUV2aOlT66t1uDfb0G5s2BtGzZGQORIyAyFTvOb54OAPGZRcqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2950915756</pqid></control><display><type>article</type><title>Precursor Engineering of Solution‐Processed Sb2S3 Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Yanyan ; Li, Ruiming ; Jia, Zhenglin ; Yu, Bin ; Yang, Yujie ; Bai, Songxue ; Pollard, Michael ; Liu, Yong ; Ma, Ye ; Kampwerth, Henner ; Lin, Qianqian</creator><creatorcontrib>Li, Yanyan ; Li, Ruiming ; Jia, Zhenglin ; Yu, Bin ; Yang, Yujie ; Bai, Songxue ; Pollard, Michael ; Liu, Yong ; Ma, Ye ; Kampwerth, Henner ; Lin, Qianqian</creatorcontrib><description>Antimony‐based chalcogenides have emerged as promising candidates for next‐generation thin film photovoltaics. Particularly, binary Sb2S3 thin films have exhibited great potential for optoelectronic applications, due to the facile and low‐cost fabrication, simple composition, decent charge transport and superior stability. However, most of the reported efficient Sb2S3 solar cells are realized based on chemical bath deposition and hydrothermal methods, which require large amount of solution and are normally very time‐consuming. In this work, Ag ions are introduced within the Sb2S3 sol‐gel precursors, and effectively modulated the crystallization and charge transport properties of Sb2S3. The crystallinity of the Sb2S3 crystal grains are enhanced and the charge carrier mobility is increased, which resulted improved charge collection efficiency and reduced charge recombination losses, reflected by the greatly improved fill factor and open‐circuit voltage of the Ag incorporated Sb2S3 solar cells. The champion devices reached a record high power conversion efficiency of 7.73% (with antireflection coating), which is comparable with the best photovoltaic performance of Sb2S3 solar cells achieved based on chemical bath deposition and hydrothermal techniques, and pave the great avenue for next‐generation solution‐processed photovoltaics.
Solution‐processed Sb2S3 solar cells are achieved via a precursor route. Ag ions is introduced to modulate the crystallization and optoelectronic properties of the antimony sulfide thin films, and the optimized devices exhibited remarkably enhanced photovoltaic performance due to the significantly enhanced charge transport and reduced disorderness.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202308895</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>AgSbS2 ; Antimony ; Antireflection coatings ; Carrier mobility ; chalcogenides ; Charge efficiency ; Charge transport ; Crystallization ; Current carriers ; Deposition ; Energy conversion efficiency ; Optoelectronics ; Photovoltaic cells ; Precursors ; Sb2S3 ; Sol-gel processes ; Solar cells ; Thin films ; Transport properties</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-03, Vol.20 (10), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6144-1761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202308895$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202308895$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Yanyan</creatorcontrib><creatorcontrib>Li, Ruiming</creatorcontrib><creatorcontrib>Jia, Zhenglin</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Yang, Yujie</creatorcontrib><creatorcontrib>Bai, Songxue</creatorcontrib><creatorcontrib>Pollard, Michael</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Ma, Ye</creatorcontrib><creatorcontrib>Kampwerth, Henner</creatorcontrib><creatorcontrib>Lin, Qianqian</creatorcontrib><title>Precursor Engineering of Solution‐Processed Sb2S3 Solar Cells</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Antimony‐based chalcogenides have emerged as promising candidates for next‐generation thin film photovoltaics. Particularly, binary Sb2S3 thin films have exhibited great potential for optoelectronic applications, due to the facile and low‐cost fabrication, simple composition, decent charge transport and superior stability. However, most of the reported efficient Sb2S3 solar cells are realized based on chemical bath deposition and hydrothermal methods, which require large amount of solution and are normally very time‐consuming. In this work, Ag ions are introduced within the Sb2S3 sol‐gel precursors, and effectively modulated the crystallization and charge transport properties of Sb2S3. The crystallinity of the Sb2S3 crystal grains are enhanced and the charge carrier mobility is increased, which resulted improved charge collection efficiency and reduced charge recombination losses, reflected by the greatly improved fill factor and open‐circuit voltage of the Ag incorporated Sb2S3 solar cells. The champion devices reached a record high power conversion efficiency of 7.73% (with antireflection coating), which is comparable with the best photovoltaic performance of Sb2S3 solar cells achieved based on chemical bath deposition and hydrothermal techniques, and pave the great avenue for next‐generation solution‐processed photovoltaics.
Solution‐processed Sb2S3 solar cells are achieved via a precursor route. Ag ions is introduced to modulate the crystallization and optoelectronic properties of the antimony sulfide thin films, and the optimized devices exhibited remarkably enhanced photovoltaic performance due to the significantly enhanced charge transport and reduced disorderness.</description><subject>AgSbS2</subject><subject>Antimony</subject><subject>Antireflection coatings</subject><subject>Carrier mobility</subject><subject>chalcogenides</subject><subject>Charge efficiency</subject><subject>Charge transport</subject><subject>Crystallization</subject><subject>Current carriers</subject><subject>Deposition</subject><subject>Energy conversion efficiency</subject><subject>Optoelectronics</subject><subject>Photovoltaic cells</subject><subject>Precursors</subject><subject>Sb2S3</subject><subject>Sol-gel processes</subject><subject>Solar cells</subject><subject>Thin films</subject><subject>Transport properties</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKevPhd87kxylyZ5EhlzChUH1eeQtrejI2tmsiJ78yf4G_0lbkz6dO7hHO6Bj5BbRieMUn4fN85NOOVAldLijIxYxiDNFNfnw83oJbmKcU0pMD6VI_KwDFj1IfqQzLtV2yGGtlslvkkK7_pd67vf759l8BXGiHVSlLyAY2RDMkPn4jW5aKyLePOvY_LxNH-fPaf52-Jl9pinWw4gUqmt0jVXjcW6mpZZlQGXVqCUWkuQjbAUaiwFt7LWih-USloi2ExANUUFY3J3-rsN_rPHuDNr34fuMGm4FlQzIUV2aOlT66t1uDfb0G5s2BtGzZGQORIyAyFTvOb54OAPGZRcqA</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>Li, Yanyan</creator><creator>Li, Ruiming</creator><creator>Jia, Zhenglin</creator><creator>Yu, Bin</creator><creator>Yang, Yujie</creator><creator>Bai, Songxue</creator><creator>Pollard, Michael</creator><creator>Liu, Yong</creator><creator>Ma, Ye</creator><creator>Kampwerth, Henner</creator><creator>Lin, Qianqian</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6144-1761</orcidid></search><sort><creationdate>20240308</creationdate><title>Precursor Engineering of Solution‐Processed Sb2S3 Solar Cells</title><author>Li, Yanyan ; Li, Ruiming ; Jia, Zhenglin ; Yu, Bin ; Yang, Yujie ; Bai, Songxue ; Pollard, Michael ; Liu, Yong ; Ma, Ye ; Kampwerth, Henner ; Lin, Qianqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2335-79a89d28faedc4b6c6327a5e7799737f5a03deb52a7d98252a070be3a653c4e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AgSbS2</topic><topic>Antimony</topic><topic>Antireflection coatings</topic><topic>Carrier mobility</topic><topic>chalcogenides</topic><topic>Charge efficiency</topic><topic>Charge transport</topic><topic>Crystallization</topic><topic>Current carriers</topic><topic>Deposition</topic><topic>Energy conversion efficiency</topic><topic>Optoelectronics</topic><topic>Photovoltaic cells</topic><topic>Precursors</topic><topic>Sb2S3</topic><topic>Sol-gel processes</topic><topic>Solar cells</topic><topic>Thin films</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanyan</creatorcontrib><creatorcontrib>Li, Ruiming</creatorcontrib><creatorcontrib>Jia, Zhenglin</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Yang, Yujie</creatorcontrib><creatorcontrib>Bai, Songxue</creatorcontrib><creatorcontrib>Pollard, Michael</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Ma, Ye</creatorcontrib><creatorcontrib>Kampwerth, Henner</creatorcontrib><creatorcontrib>Lin, Qianqian</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yanyan</au><au>Li, Ruiming</au><au>Jia, Zhenglin</au><au>Yu, Bin</au><au>Yang, Yujie</au><au>Bai, Songxue</au><au>Pollard, Michael</au><au>Liu, Yong</au><au>Ma, Ye</au><au>Kampwerth, Henner</au><au>Lin, Qianqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precursor Engineering of Solution‐Processed Sb2S3 Solar Cells</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-03-08</date><risdate>2024</risdate><volume>20</volume><issue>10</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Antimony‐based chalcogenides have emerged as promising candidates for next‐generation thin film photovoltaics. Particularly, binary Sb2S3 thin films have exhibited great potential for optoelectronic applications, due to the facile and low‐cost fabrication, simple composition, decent charge transport and superior stability. However, most of the reported efficient Sb2S3 solar cells are realized based on chemical bath deposition and hydrothermal methods, which require large amount of solution and are normally very time‐consuming. In this work, Ag ions are introduced within the Sb2S3 sol‐gel precursors, and effectively modulated the crystallization and charge transport properties of Sb2S3. The crystallinity of the Sb2S3 crystal grains are enhanced and the charge carrier mobility is increased, which resulted improved charge collection efficiency and reduced charge recombination losses, reflected by the greatly improved fill factor and open‐circuit voltage of the Ag incorporated Sb2S3 solar cells. The champion devices reached a record high power conversion efficiency of 7.73% (with antireflection coating), which is comparable with the best photovoltaic performance of Sb2S3 solar cells achieved based on chemical bath deposition and hydrothermal techniques, and pave the great avenue for next‐generation solution‐processed photovoltaics.
Solution‐processed Sb2S3 solar cells are achieved via a precursor route. Ag ions is introduced to modulate the crystallization and optoelectronic properties of the antimony sulfide thin films, and the optimized devices exhibited remarkably enhanced photovoltaic performance due to the significantly enhanced charge transport and reduced disorderness.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202308895</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6144-1761</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-03, Vol.20 (10), p.n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_journals_2950915756 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | AgSbS2 Antimony Antireflection coatings Carrier mobility chalcogenides Charge efficiency Charge transport Crystallization Current carriers Deposition Energy conversion efficiency Optoelectronics Photovoltaic cells Precursors Sb2S3 Sol-gel processes Solar cells Thin films Transport properties |
title | Precursor Engineering of Solution‐Processed Sb2S3 Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precursor%20Engineering%20of%20Solution%E2%80%90Processed%20Sb2S3%20Solar%20Cells&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Li,%20Yanyan&rft.date=2024-03-08&rft.volume=20&rft.issue=10&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202308895&rft_dat=%3Cproquest_wiley%3E2950915756%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2950915756&rft_id=info:pmid/&rfr_iscdi=true |