Effect of water and confining pressure on fault slip behaviors and rupture propagation
Pore fluid is ubiquitous within the Earth's crust and severely impacts shear rupture propagation and the slip behaviors of faults. We conducted triaxial experiments on sandstone to investigate the effects of crack damage, confining pressure, and water on fault slip behaviors and rupture propaga...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-03, Vol.36 (3) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Long, Kun Wu, Lizhou Zhang, Zhenyu Liang, Zhiming Liu, Han Liu, Zhenjian |
description | Pore fluid is ubiquitous within the Earth's crust and severely impacts shear rupture propagation and the slip behaviors of faults. We conducted triaxial experiments on sandstone to investigate the effects of crack damage, confining pressure, and water on fault slip behaviors and rupture propagation. Two loading configurations, conventional loading and increasing-amplitude cyclic loading, were conducted to compare the inelastic behavior and failure modes of sandstone samples. In addition to a macroscopic deformation and mechanical properties analysis, a noncontact optical scanner and magnetic resonance imaging technique were used to analyze the microstructural evolution of the sandstone. The results show that a higher confining pressure results in a more homogeneous fault plane. Fault slip behaviors can be divided into the slip-strengthening and slip-weakening stages. In the brittle regime, pore water reduces the brittle strength of rocks but does not induce different fault slip behaviors. When the confinement is high enough, rocks fail in the brittle–ductile transition regime where dynamic faulting is prohibited. In the brittle–ductile transitional regime, pore water enhances stabilization, and the slip behaviors distinctively differ from those occurring without water. |
doi_str_mv | 10.1063/5.0197923 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2949259215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2949259215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-c2db6b848235042b4620e42662767327127378104aa68b06d09788948b5211303</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcIuFIYPblMLksp9QIFN-o2ZKZJTamTMckovr3Ty9rVOYuP83N-hC4J3BIQ7K6-BaKlpuwITQgoXUkhxPF2l1AJwcgpOst5DQBMUzFB73PvXVtw9PjHFpew7Za4jZ0PXehWuE8u5yE5HDvs7bApOG9Cjxv3Yb9DTHnH09CXrelT7O3KlhC7c3Ti7Sa7i8OcoreH-evsqVq8PD7P7hdVy6gsVUuXjWgUV5TVwGnDBQXHqRBUCjkKQiWTigC3VqgGxBK0VEpz1dSUEAZsiq72d8fsr8HlYtZxSN0YaajmmtaaknpU13vVpphzct70KXza9GsImG1tpjaH2kZ7s7e5DWX3yz_4DzVoalI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2949259215</pqid></control><display><type>article</type><title>Effect of water and confining pressure on fault slip behaviors and rupture propagation</title><source>AIP Journals Complete</source><creator>Long, Kun ; Wu, Lizhou ; Zhang, Zhenyu ; Liang, Zhiming ; Liu, Han ; Liu, Zhenjian</creator><creatorcontrib>Long, Kun ; Wu, Lizhou ; Zhang, Zhenyu ; Liang, Zhiming ; Liu, Han ; Liu, Zhenjian</creatorcontrib><description>Pore fluid is ubiquitous within the Earth's crust and severely impacts shear rupture propagation and the slip behaviors of faults. We conducted triaxial experiments on sandstone to investigate the effects of crack damage, confining pressure, and water on fault slip behaviors and rupture propagation. Two loading configurations, conventional loading and increasing-amplitude cyclic loading, were conducted to compare the inelastic behavior and failure modes of sandstone samples. In addition to a macroscopic deformation and mechanical properties analysis, a noncontact optical scanner and magnetic resonance imaging technique were used to analyze the microstructural evolution of the sandstone. The results show that a higher confining pressure results in a more homogeneous fault plane. Fault slip behaviors can be divided into the slip-strengthening and slip-weakening stages. In the brittle regime, pore water reduces the brittle strength of rocks but does not induce different fault slip behaviors. When the confinement is high enough, rocks fail in the brittle–ductile transition regime where dynamic faulting is prohibited. In the brittle–ductile transitional regime, pore water enhances stabilization, and the slip behaviors distinctively differ from those occurring without water.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0197923</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Brittleness ; Confining ; Cyclic loads ; Ductile-brittle transition ; Failure modes ; Geological faults ; Imaging techniques ; Magnetic properties ; Magnetic resonance imaging ; Mechanical properties ; Optical properties ; Optical scanners ; Pore water ; Propagation ; Rocks ; Sandstone ; Slip ; Water damage</subject><ispartof>Physics of fluids (1994), 2024-03, Vol.36 (3)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-c2db6b848235042b4620e42662767327127378104aa68b06d09788948b5211303</citedby><cites>FETCH-LOGICAL-c327t-c2db6b848235042b4620e42662767327127378104aa68b06d09788948b5211303</cites><orcidid>0000-0002-5883-2251 ; 0000-0002-2309-3145 ; 0009-0001-0939-9850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Long, Kun</creatorcontrib><creatorcontrib>Wu, Lizhou</creatorcontrib><creatorcontrib>Zhang, Zhenyu</creatorcontrib><creatorcontrib>Liang, Zhiming</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Liu, Zhenjian</creatorcontrib><title>Effect of water and confining pressure on fault slip behaviors and rupture propagation</title><title>Physics of fluids (1994)</title><description>Pore fluid is ubiquitous within the Earth's crust and severely impacts shear rupture propagation and the slip behaviors of faults. We conducted triaxial experiments on sandstone to investigate the effects of crack damage, confining pressure, and water on fault slip behaviors and rupture propagation. Two loading configurations, conventional loading and increasing-amplitude cyclic loading, were conducted to compare the inelastic behavior and failure modes of sandstone samples. In addition to a macroscopic deformation and mechanical properties analysis, a noncontact optical scanner and magnetic resonance imaging technique were used to analyze the microstructural evolution of the sandstone. The results show that a higher confining pressure results in a more homogeneous fault plane. Fault slip behaviors can be divided into the slip-strengthening and slip-weakening stages. In the brittle regime, pore water reduces the brittle strength of rocks but does not induce different fault slip behaviors. When the confinement is high enough, rocks fail in the brittle–ductile transition regime where dynamic faulting is prohibited. In the brittle–ductile transitional regime, pore water enhances stabilization, and the slip behaviors distinctively differ from those occurring without water.</description><subject>Brittleness</subject><subject>Confining</subject><subject>Cyclic loads</subject><subject>Ductile-brittle transition</subject><subject>Failure modes</subject><subject>Geological faults</subject><subject>Imaging techniques</subject><subject>Magnetic properties</subject><subject>Magnetic resonance imaging</subject><subject>Mechanical properties</subject><subject>Optical properties</subject><subject>Optical scanners</subject><subject>Pore water</subject><subject>Propagation</subject><subject>Rocks</subject><subject>Sandstone</subject><subject>Slip</subject><subject>Water damage</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcIuFIYPblMLksp9QIFN-o2ZKZJTamTMckovr3Ty9rVOYuP83N-hC4J3BIQ7K6-BaKlpuwITQgoXUkhxPF2l1AJwcgpOst5DQBMUzFB73PvXVtw9PjHFpew7Za4jZ0PXehWuE8u5yE5HDvs7bApOG9Cjxv3Yb9DTHnH09CXrelT7O3KlhC7c3Ti7Sa7i8OcoreH-evsqVq8PD7P7hdVy6gsVUuXjWgUV5TVwGnDBQXHqRBUCjkKQiWTigC3VqgGxBK0VEpz1dSUEAZsiq72d8fsr8HlYtZxSN0YaajmmtaaknpU13vVpphzct70KXza9GsImG1tpjaH2kZ7s7e5DWX3yz_4DzVoalI</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Long, Kun</creator><creator>Wu, Lizhou</creator><creator>Zhang, Zhenyu</creator><creator>Liang, Zhiming</creator><creator>Liu, Han</creator><creator>Liu, Zhenjian</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5883-2251</orcidid><orcidid>https://orcid.org/0000-0002-2309-3145</orcidid><orcidid>https://orcid.org/0009-0001-0939-9850</orcidid></search><sort><creationdate>202403</creationdate><title>Effect of water and confining pressure on fault slip behaviors and rupture propagation</title><author>Long, Kun ; Wu, Lizhou ; Zhang, Zhenyu ; Liang, Zhiming ; Liu, Han ; Liu, Zhenjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-c2db6b848235042b4620e42662767327127378104aa68b06d09788948b5211303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brittleness</topic><topic>Confining</topic><topic>Cyclic loads</topic><topic>Ductile-brittle transition</topic><topic>Failure modes</topic><topic>Geological faults</topic><topic>Imaging techniques</topic><topic>Magnetic properties</topic><topic>Magnetic resonance imaging</topic><topic>Mechanical properties</topic><topic>Optical properties</topic><topic>Optical scanners</topic><topic>Pore water</topic><topic>Propagation</topic><topic>Rocks</topic><topic>Sandstone</topic><topic>Slip</topic><topic>Water damage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Kun</creatorcontrib><creatorcontrib>Wu, Lizhou</creatorcontrib><creatorcontrib>Zhang, Zhenyu</creatorcontrib><creatorcontrib>Liang, Zhiming</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Liu, Zhenjian</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Kun</au><au>Wu, Lizhou</au><au>Zhang, Zhenyu</au><au>Liang, Zhiming</au><au>Liu, Han</au><au>Liu, Zhenjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of water and confining pressure on fault slip behaviors and rupture propagation</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-03</date><risdate>2024</risdate><volume>36</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Pore fluid is ubiquitous within the Earth's crust and severely impacts shear rupture propagation and the slip behaviors of faults. We conducted triaxial experiments on sandstone to investigate the effects of crack damage, confining pressure, and water on fault slip behaviors and rupture propagation. Two loading configurations, conventional loading and increasing-amplitude cyclic loading, were conducted to compare the inelastic behavior and failure modes of sandstone samples. In addition to a macroscopic deformation and mechanical properties analysis, a noncontact optical scanner and magnetic resonance imaging technique were used to analyze the microstructural evolution of the sandstone. The results show that a higher confining pressure results in a more homogeneous fault plane. Fault slip behaviors can be divided into the slip-strengthening and slip-weakening stages. In the brittle regime, pore water reduces the brittle strength of rocks but does not induce different fault slip behaviors. When the confinement is high enough, rocks fail in the brittle–ductile transition regime where dynamic faulting is prohibited. In the brittle–ductile transitional regime, pore water enhances stabilization, and the slip behaviors distinctively differ from those occurring without water.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0197923</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5883-2251</orcidid><orcidid>https://orcid.org/0000-0002-2309-3145</orcidid><orcidid>https://orcid.org/0009-0001-0939-9850</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-03, Vol.36 (3) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2949259215 |
source | AIP Journals Complete |
subjects | Brittleness Confining Cyclic loads Ductile-brittle transition Failure modes Geological faults Imaging techniques Magnetic properties Magnetic resonance imaging Mechanical properties Optical properties Optical scanners Pore water Propagation Rocks Sandstone Slip Water damage |
title | Effect of water and confining pressure on fault slip behaviors and rupture propagation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20water%20and%20confining%20pressure%20on%20fault%20slip%20behaviors%20and%20rupture%20propagation&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Long,%20Kun&rft.date=2024-03&rft.volume=36&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0197923&rft_dat=%3Cproquest_scita%3E2949259215%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2949259215&rft_id=info:pmid/&rfr_iscdi=true |