A review for vegetation vulnerability using artificial intelligent (AI) techniques
Because it is detrimental to all living things, including people, directly and indirectly, vegetation vulnerability has gained international attention. The vegetation cover is essential for maintaining the ecological balance on the surface of the earth, so it can be considered one of the most import...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3092 |
creator | Jasim, Basheer S. Jasim, Oday Z. AL-Hameedawi, Amjed N. |
description | Because it is detrimental to all living things, including people, directly and indirectly, vegetation vulnerability has gained international attention. The vegetation cover is essential for maintaining the ecological balance on the surface of the earth, so it can be considered one of the most important renewable natural resources with significant economic and environmental feasibility. According to the review, topography, human involvement (cover, land use, and people density), climatic parameters (precipitation, air temp, sunlight length), and topographic features all contribute to a decrease in vegetation area (aspect, slope, elevation). Owing to their adaptability to data, neural networks have been implemented in Remote Sensing (RS) technologies as they gained prominence. To improve categorization and accuracy, image segments eventually took the place of the neural network’s initial input layer, which in neural networks is the smallest unit of an image, known as the pixel. To study and accurately anticipate the vegetation susceptibility, the earlier studies Systems used GIS and machine learning to create an Artificial Neural Network (ANN) based model. |
doi_str_mv | 10.1063/5.0199653 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2949145706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2949145706</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1683-7fd3894f4bfd908529366782035e0c6ce5ea209aa8b9ba43ec9df6d8a50291e03</originalsourceid><addsrcrecordid>eNotkE1LwzAcxoMoOKcHv0HAiwqdSfPS5DjG1MFAEAVvIW3_mRk1rWk62be3Yzs9l4fn5YfQLSUzSiR7EjNCtZaCnaEJFYJmhaTyHE0I0TzLOfu6RFd9vyUk10WhJuh9jiPsPPxh10a8gw0km3wb8G5oAkRb-sanPR56HzbYxuSdr7xtsA8JmsZvICR8P1894ATVd_C_A_TX6MLZpoebk07R5_PyY_Gard9eVov5OuuoVCwrXM2U5o6XrtZEiVwzKQuVEyaAVLICATYn2lpV6tJyBpWunayVFeN2CoRN0d0xt4vtoTeZbTvEMFaaXHNNuShGIlP0eHT1lT9eM130PzbuDSXmwMwIc2LG_gFlKV4b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2949145706</pqid></control><display><type>conference_proceeding</type><title>A review for vegetation vulnerability using artificial intelligent (AI) techniques</title><source>AIP Journals Complete</source><creator>Jasim, Basheer S. ; Jasim, Oday Z. ; AL-Hameedawi, Amjed N.</creator><contributor>Abid, Dhurgham Hassan ; Hamza, Bashar J. ; Abed, Azher M. ; Wadday, Ahmed Ghanim ; Al-Manea, Ahmed Razzaq Hasan ; Kadhim, Ali Najah ; Al-Musawi, Tariq J. ; Ibadi, Atheer Kadhim ; AL-Hasnawi, Dhafer Manea Hachim ; Faisal, Mustafa Dakhil ; Jaaz, Hussein Abad Gazi ; Majdi, Ali S.</contributor><creatorcontrib>Jasim, Basheer S. ; Jasim, Oday Z. ; AL-Hameedawi, Amjed N. ; Abid, Dhurgham Hassan ; Hamza, Bashar J. ; Abed, Azher M. ; Wadday, Ahmed Ghanim ; Al-Manea, Ahmed Razzaq Hasan ; Kadhim, Ali Najah ; Al-Musawi, Tariq J. ; Ibadi, Atheer Kadhim ; AL-Hasnawi, Dhafer Manea Hachim ; Faisal, Mustafa Dakhil ; Jaaz, Hussein Abad Gazi ; Majdi, Ali S.</creatorcontrib><description>Because it is detrimental to all living things, including people, directly and indirectly, vegetation vulnerability has gained international attention. The vegetation cover is essential for maintaining the ecological balance on the surface of the earth, so it can be considered one of the most important renewable natural resources with significant economic and environmental feasibility. According to the review, topography, human involvement (cover, land use, and people density), climatic parameters (precipitation, air temp, sunlight length), and topographic features all contribute to a decrease in vegetation area (aspect, slope, elevation). Owing to their adaptability to data, neural networks have been implemented in Remote Sensing (RS) technologies as they gained prominence. To improve categorization and accuracy, image segments eventually took the place of the neural network’s initial input layer, which in neural networks is the smallest unit of an image, known as the pixel. To study and accurately anticipate the vegetation susceptibility, the earlier studies Systems used GIS and machine learning to create an Artificial Neural Network (ANN) based model.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0199653</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Earth surface ; Feasibility studies ; Land use ; Machine learning ; Natural resources ; Neural networks ; Remote sensing ; Vegetation</subject><ispartof>AIP conference proceedings, 2024, Vol.3092 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0199653$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Abid, Dhurgham Hassan</contributor><contributor>Hamza, Bashar J.</contributor><contributor>Abed, Azher M.</contributor><contributor>Wadday, Ahmed Ghanim</contributor><contributor>Al-Manea, Ahmed Razzaq Hasan</contributor><contributor>Kadhim, Ali Najah</contributor><contributor>Al-Musawi, Tariq J.</contributor><contributor>Ibadi, Atheer Kadhim</contributor><contributor>AL-Hasnawi, Dhafer Manea Hachim</contributor><contributor>Faisal, Mustafa Dakhil</contributor><contributor>Jaaz, Hussein Abad Gazi</contributor><contributor>Majdi, Ali S.</contributor><creatorcontrib>Jasim, Basheer S.</creatorcontrib><creatorcontrib>Jasim, Oday Z.</creatorcontrib><creatorcontrib>AL-Hameedawi, Amjed N.</creatorcontrib><title>A review for vegetation vulnerability using artificial intelligent (AI) techniques</title><title>AIP conference proceedings</title><description>Because it is detrimental to all living things, including people, directly and indirectly, vegetation vulnerability has gained international attention. The vegetation cover is essential for maintaining the ecological balance on the surface of the earth, so it can be considered one of the most important renewable natural resources with significant economic and environmental feasibility. According to the review, topography, human involvement (cover, land use, and people density), climatic parameters (precipitation, air temp, sunlight length), and topographic features all contribute to a decrease in vegetation area (aspect, slope, elevation). Owing to their adaptability to data, neural networks have been implemented in Remote Sensing (RS) technologies as they gained prominence. To improve categorization and accuracy, image segments eventually took the place of the neural network’s initial input layer, which in neural networks is the smallest unit of an image, known as the pixel. To study and accurately anticipate the vegetation susceptibility, the earlier studies Systems used GIS and machine learning to create an Artificial Neural Network (ANN) based model.</description><subject>Artificial neural networks</subject><subject>Earth surface</subject><subject>Feasibility studies</subject><subject>Land use</subject><subject>Machine learning</subject><subject>Natural resources</subject><subject>Neural networks</subject><subject>Remote sensing</subject><subject>Vegetation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LwzAcxoMoOKcHv0HAiwqdSfPS5DjG1MFAEAVvIW3_mRk1rWk62be3Yzs9l4fn5YfQLSUzSiR7EjNCtZaCnaEJFYJmhaTyHE0I0TzLOfu6RFd9vyUk10WhJuh9jiPsPPxh10a8gw0km3wb8G5oAkRb-sanPR56HzbYxuSdr7xtsA8JmsZvICR8P1894ATVd_C_A_TX6MLZpoebk07R5_PyY_Gard9eVov5OuuoVCwrXM2U5o6XrtZEiVwzKQuVEyaAVLICATYn2lpV6tJyBpWunayVFeN2CoRN0d0xt4vtoTeZbTvEMFaaXHNNuShGIlP0eHT1lT9eM130PzbuDSXmwMwIc2LG_gFlKV4b</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>Jasim, Basheer S.</creator><creator>Jasim, Oday Z.</creator><creator>AL-Hameedawi, Amjed N.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240308</creationdate><title>A review for vegetation vulnerability using artificial intelligent (AI) techniques</title><author>Jasim, Basheer S. ; Jasim, Oday Z. ; AL-Hameedawi, Amjed N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1683-7fd3894f4bfd908529366782035e0c6ce5ea209aa8b9ba43ec9df6d8a50291e03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Earth surface</topic><topic>Feasibility studies</topic><topic>Land use</topic><topic>Machine learning</topic><topic>Natural resources</topic><topic>Neural networks</topic><topic>Remote sensing</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jasim, Basheer S.</creatorcontrib><creatorcontrib>Jasim, Oday Z.</creatorcontrib><creatorcontrib>AL-Hameedawi, Amjed N.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jasim, Basheer S.</au><au>Jasim, Oday Z.</au><au>AL-Hameedawi, Amjed N.</au><au>Abid, Dhurgham Hassan</au><au>Hamza, Bashar J.</au><au>Abed, Azher M.</au><au>Wadday, Ahmed Ghanim</au><au>Al-Manea, Ahmed Razzaq Hasan</au><au>Kadhim, Ali Najah</au><au>Al-Musawi, Tariq J.</au><au>Ibadi, Atheer Kadhim</au><au>AL-Hasnawi, Dhafer Manea Hachim</au><au>Faisal, Mustafa Dakhil</au><au>Jaaz, Hussein Abad Gazi</au><au>Majdi, Ali S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A review for vegetation vulnerability using artificial intelligent (AI) techniques</atitle><btitle>AIP conference proceedings</btitle><date>2024-03-08</date><risdate>2024</risdate><volume>3092</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Because it is detrimental to all living things, including people, directly and indirectly, vegetation vulnerability has gained international attention. The vegetation cover is essential for maintaining the ecological balance on the surface of the earth, so it can be considered one of the most important renewable natural resources with significant economic and environmental feasibility. According to the review, topography, human involvement (cover, land use, and people density), climatic parameters (precipitation, air temp, sunlight length), and topographic features all contribute to a decrease in vegetation area (aspect, slope, elevation). Owing to their adaptability to data, neural networks have been implemented in Remote Sensing (RS) technologies as they gained prominence. To improve categorization and accuracy, image segments eventually took the place of the neural network’s initial input layer, which in neural networks is the smallest unit of an image, known as the pixel. To study and accurately anticipate the vegetation susceptibility, the earlier studies Systems used GIS and machine learning to create an Artificial Neural Network (ANN) based model.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0199653</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3092 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2949145706 |
source | AIP Journals Complete |
subjects | Artificial neural networks Earth surface Feasibility studies Land use Machine learning Natural resources Neural networks Remote sensing Vegetation |
title | A review for vegetation vulnerability using artificial intelligent (AI) techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20review%20for%20vegetation%20vulnerability%20using%20artificial%20intelligent%20(AI)%20techniques&rft.btitle=AIP%20conference%20proceedings&rft.au=Jasim,%20Basheer%20S.&rft.date=2024-03-08&rft.volume=3092&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0199653&rft_dat=%3Cproquest_scita%3E2949145706%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2949145706&rft_id=info:pmid/&rfr_iscdi=true |