A review for vegetation vulnerability using artificial intelligent (AI) techniques

Because it is detrimental to all living things, including people, directly and indirectly, vegetation vulnerability has gained international attention. The vegetation cover is essential for maintaining the ecological balance on the surface of the earth, so it can be considered one of the most import...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jasim, Basheer S., Jasim, Oday Z., AL-Hameedawi, Amjed N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3092
creator Jasim, Basheer S.
Jasim, Oday Z.
AL-Hameedawi, Amjed N.
description Because it is detrimental to all living things, including people, directly and indirectly, vegetation vulnerability has gained international attention. The vegetation cover is essential for maintaining the ecological balance on the surface of the earth, so it can be considered one of the most important renewable natural resources with significant economic and environmental feasibility. According to the review, topography, human involvement (cover, land use, and people density), climatic parameters (precipitation, air temp, sunlight length), and topographic features all contribute to a decrease in vegetation area (aspect, slope, elevation). Owing to their adaptability to data, neural networks have been implemented in Remote Sensing (RS) technologies as they gained prominence. To improve categorization and accuracy, image segments eventually took the place of the neural network’s initial input layer, which in neural networks is the smallest unit of an image, known as the pixel. To study and accurately anticipate the vegetation susceptibility, the earlier studies Systems used GIS and machine learning to create an Artificial Neural Network (ANN) based model.
doi_str_mv 10.1063/5.0199653
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2949145706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2949145706</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1683-7fd3894f4bfd908529366782035e0c6ce5ea209aa8b9ba43ec9df6d8a50291e03</originalsourceid><addsrcrecordid>eNotkE1LwzAcxoMoOKcHv0HAiwqdSfPS5DjG1MFAEAVvIW3_mRk1rWk62be3Yzs9l4fn5YfQLSUzSiR7EjNCtZaCnaEJFYJmhaTyHE0I0TzLOfu6RFd9vyUk10WhJuh9jiPsPPxh10a8gw0km3wb8G5oAkRb-sanPR56HzbYxuSdr7xtsA8JmsZvICR8P1894ATVd_C_A_TX6MLZpoebk07R5_PyY_Gard9eVov5OuuoVCwrXM2U5o6XrtZEiVwzKQuVEyaAVLICATYn2lpV6tJyBpWunayVFeN2CoRN0d0xt4vtoTeZbTvEMFaaXHNNuShGIlP0eHT1lT9eM130PzbuDSXmwMwIc2LG_gFlKV4b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2949145706</pqid></control><display><type>conference_proceeding</type><title>A review for vegetation vulnerability using artificial intelligent (AI) techniques</title><source>AIP Journals Complete</source><creator>Jasim, Basheer S. ; Jasim, Oday Z. ; AL-Hameedawi, Amjed N.</creator><contributor>Abid, Dhurgham Hassan ; Hamza, Bashar J. ; Abed, Azher M. ; Wadday, Ahmed Ghanim ; Al-Manea, Ahmed Razzaq Hasan ; Kadhim, Ali Najah ; Al-Musawi, Tariq J. ; Ibadi, Atheer Kadhim ; AL-Hasnawi, Dhafer Manea Hachim ; Faisal, Mustafa Dakhil ; Jaaz, Hussein Abad Gazi ; Majdi, Ali S.</contributor><creatorcontrib>Jasim, Basheer S. ; Jasim, Oday Z. ; AL-Hameedawi, Amjed N. ; Abid, Dhurgham Hassan ; Hamza, Bashar J. ; Abed, Azher M. ; Wadday, Ahmed Ghanim ; Al-Manea, Ahmed Razzaq Hasan ; Kadhim, Ali Najah ; Al-Musawi, Tariq J. ; Ibadi, Atheer Kadhim ; AL-Hasnawi, Dhafer Manea Hachim ; Faisal, Mustafa Dakhil ; Jaaz, Hussein Abad Gazi ; Majdi, Ali S.</creatorcontrib><description>Because it is detrimental to all living things, including people, directly and indirectly, vegetation vulnerability has gained international attention. The vegetation cover is essential for maintaining the ecological balance on the surface of the earth, so it can be considered one of the most important renewable natural resources with significant economic and environmental feasibility. According to the review, topography, human involvement (cover, land use, and people density), climatic parameters (precipitation, air temp, sunlight length), and topographic features all contribute to a decrease in vegetation area (aspect, slope, elevation). Owing to their adaptability to data, neural networks have been implemented in Remote Sensing (RS) technologies as they gained prominence. To improve categorization and accuracy, image segments eventually took the place of the neural network’s initial input layer, which in neural networks is the smallest unit of an image, known as the pixel. To study and accurately anticipate the vegetation susceptibility, the earlier studies Systems used GIS and machine learning to create an Artificial Neural Network (ANN) based model.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0199653</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Earth surface ; Feasibility studies ; Land use ; Machine learning ; Natural resources ; Neural networks ; Remote sensing ; Vegetation</subject><ispartof>AIP conference proceedings, 2024, Vol.3092 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0199653$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Abid, Dhurgham Hassan</contributor><contributor>Hamza, Bashar J.</contributor><contributor>Abed, Azher M.</contributor><contributor>Wadday, Ahmed Ghanim</contributor><contributor>Al-Manea, Ahmed Razzaq Hasan</contributor><contributor>Kadhim, Ali Najah</contributor><contributor>Al-Musawi, Tariq J.</contributor><contributor>Ibadi, Atheer Kadhim</contributor><contributor>AL-Hasnawi, Dhafer Manea Hachim</contributor><contributor>Faisal, Mustafa Dakhil</contributor><contributor>Jaaz, Hussein Abad Gazi</contributor><contributor>Majdi, Ali S.</contributor><creatorcontrib>Jasim, Basheer S.</creatorcontrib><creatorcontrib>Jasim, Oday Z.</creatorcontrib><creatorcontrib>AL-Hameedawi, Amjed N.</creatorcontrib><title>A review for vegetation vulnerability using artificial intelligent (AI) techniques</title><title>AIP conference proceedings</title><description>Because it is detrimental to all living things, including people, directly and indirectly, vegetation vulnerability has gained international attention. The vegetation cover is essential for maintaining the ecological balance on the surface of the earth, so it can be considered one of the most important renewable natural resources with significant economic and environmental feasibility. According to the review, topography, human involvement (cover, land use, and people density), climatic parameters (precipitation, air temp, sunlight length), and topographic features all contribute to a decrease in vegetation area (aspect, slope, elevation). Owing to their adaptability to data, neural networks have been implemented in Remote Sensing (RS) technologies as they gained prominence. To improve categorization and accuracy, image segments eventually took the place of the neural network’s initial input layer, which in neural networks is the smallest unit of an image, known as the pixel. To study and accurately anticipate the vegetation susceptibility, the earlier studies Systems used GIS and machine learning to create an Artificial Neural Network (ANN) based model.</description><subject>Artificial neural networks</subject><subject>Earth surface</subject><subject>Feasibility studies</subject><subject>Land use</subject><subject>Machine learning</subject><subject>Natural resources</subject><subject>Neural networks</subject><subject>Remote sensing</subject><subject>Vegetation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LwzAcxoMoOKcHv0HAiwqdSfPS5DjG1MFAEAVvIW3_mRk1rWk62be3Yzs9l4fn5YfQLSUzSiR7EjNCtZaCnaEJFYJmhaTyHE0I0TzLOfu6RFd9vyUk10WhJuh9jiPsPPxh10a8gw0km3wb8G5oAkRb-sanPR56HzbYxuSdr7xtsA8JmsZvICR8P1894ATVd_C_A_TX6MLZpoebk07R5_PyY_Gard9eVov5OuuoVCwrXM2U5o6XrtZEiVwzKQuVEyaAVLICATYn2lpV6tJyBpWunayVFeN2CoRN0d0xt4vtoTeZbTvEMFaaXHNNuShGIlP0eHT1lT9eM130PzbuDSXmwMwIc2LG_gFlKV4b</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>Jasim, Basheer S.</creator><creator>Jasim, Oday Z.</creator><creator>AL-Hameedawi, Amjed N.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240308</creationdate><title>A review for vegetation vulnerability using artificial intelligent (AI) techniques</title><author>Jasim, Basheer S. ; Jasim, Oday Z. ; AL-Hameedawi, Amjed N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1683-7fd3894f4bfd908529366782035e0c6ce5ea209aa8b9ba43ec9df6d8a50291e03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Earth surface</topic><topic>Feasibility studies</topic><topic>Land use</topic><topic>Machine learning</topic><topic>Natural resources</topic><topic>Neural networks</topic><topic>Remote sensing</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jasim, Basheer S.</creatorcontrib><creatorcontrib>Jasim, Oday Z.</creatorcontrib><creatorcontrib>AL-Hameedawi, Amjed N.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jasim, Basheer S.</au><au>Jasim, Oday Z.</au><au>AL-Hameedawi, Amjed N.</au><au>Abid, Dhurgham Hassan</au><au>Hamza, Bashar J.</au><au>Abed, Azher M.</au><au>Wadday, Ahmed Ghanim</au><au>Al-Manea, Ahmed Razzaq Hasan</au><au>Kadhim, Ali Najah</au><au>Al-Musawi, Tariq J.</au><au>Ibadi, Atheer Kadhim</au><au>AL-Hasnawi, Dhafer Manea Hachim</au><au>Faisal, Mustafa Dakhil</au><au>Jaaz, Hussein Abad Gazi</au><au>Majdi, Ali S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A review for vegetation vulnerability using artificial intelligent (AI) techniques</atitle><btitle>AIP conference proceedings</btitle><date>2024-03-08</date><risdate>2024</risdate><volume>3092</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Because it is detrimental to all living things, including people, directly and indirectly, vegetation vulnerability has gained international attention. The vegetation cover is essential for maintaining the ecological balance on the surface of the earth, so it can be considered one of the most important renewable natural resources with significant economic and environmental feasibility. According to the review, topography, human involvement (cover, land use, and people density), climatic parameters (precipitation, air temp, sunlight length), and topographic features all contribute to a decrease in vegetation area (aspect, slope, elevation). Owing to their adaptability to data, neural networks have been implemented in Remote Sensing (RS) technologies as they gained prominence. To improve categorization and accuracy, image segments eventually took the place of the neural network’s initial input layer, which in neural networks is the smallest unit of an image, known as the pixel. To study and accurately anticipate the vegetation susceptibility, the earlier studies Systems used GIS and machine learning to create an Artificial Neural Network (ANN) based model.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0199653</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3092 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2949145706
source AIP Journals Complete
subjects Artificial neural networks
Earth surface
Feasibility studies
Land use
Machine learning
Natural resources
Neural networks
Remote sensing
Vegetation
title A review for vegetation vulnerability using artificial intelligent (AI) techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20review%20for%20vegetation%20vulnerability%20using%20artificial%20intelligent%20(AI)%20techniques&rft.btitle=AIP%20conference%20proceedings&rft.au=Jasim,%20Basheer%20S.&rft.date=2024-03-08&rft.volume=3092&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0199653&rft_dat=%3Cproquest_scita%3E2949145706%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2949145706&rft_id=info:pmid/&rfr_iscdi=true