UAV Classification Based on Deep Learning Fusion of Multidimensional UAV Micro-Doppler Image Features

In the realm of expanding unmanned aerial vehicle (UAV) applications and types, the precision of UAV target classification is of paramount importance. Deep learning has emerged as the linchpin of such endeavors. A new approach based on deep learning fusion technique is proposed by our team, which in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5
Hauptverfasser: Chen, Xu, Ma, Chunguang, Zhao, Chaofan, Luo, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 21
creator Chen, Xu
Ma, Chunguang
Zhao, Chaofan
Luo, Yong
description In the realm of expanding unmanned aerial vehicle (UAV) applications and types, the precision of UAV target classification is of paramount importance. Deep learning has emerged as the linchpin of such endeavors. A new approach based on deep learning fusion technique is proposed by our team, which integrates frequency modulated continuous wave (FMCW) radar micro-Doppler signals, cadence-velocity diagram (CVD) signals and cepstrum (CEP) signals. This synthesis culminates in UAV classification with exceptional accuracy, surpassing 97%. In this letter, two deep learning fusion approaches leveraging the ResNet34 network were employed: data-level fusion and feature-level fusion. Empirical results unequivocally highlight the potency of deep learning information fusion—most notably, the fusion of the three spectrograms—exceeding 97% accuracy. This firmly underscores the pivotal role that deep learning fusion techniques play in amplifying precision in UAV target classification.
doi_str_mv 10.1109/LGRS.2024.3371171
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2947827905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2947827905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-29e475ada4289d679e3853ceb4c811a95f54ebaef7a2f71220ededbd36af58c53</originalsourceid><addsrcrecordid>eNotkFFLwzAUhYMoOKc_wLeAz51J2izJ49zsHHQI6sS3kLU3I6Nra9I--O9t2J7u4Z7D4fAh9EjJjFKinov1x-eMEZbN0lRQKugVmlDOZUK4oNdRZzzhSv7corsQjmRMSikmCHaLb7ysTQjOutL0rm3wiwlQ4VGsADpcgPGNaw44H0J0W4u3Q927yp2giR9T41iydaVvk1XbdTV4vDmZA-AcTD94CPfoxpo6wMPlTtEuf_1aviXF-3qzXBRJyRjvE6YgE9xUJmNSVXOhIJU8LWGflZJSo7jlGewNWGGYFZQxAhVU-yqdG8tlydMpejr3dr79HSD0-tgOflwYNFOZkEwoElP0nBoHh-DB6s67k_F_mhIdaepIU0ea-kIz_Qdx4Ghs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2947827905</pqid></control><display><type>article</type><title>UAV Classification Based on Deep Learning Fusion of Multidimensional UAV Micro-Doppler Image Features</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xu ; Ma, Chunguang ; Zhao, Chaofan ; Luo, Yong</creator><creatorcontrib>Chen, Xu ; Ma, Chunguang ; Zhao, Chaofan ; Luo, Yong</creatorcontrib><description>In the realm of expanding unmanned aerial vehicle (UAV) applications and types, the precision of UAV target classification is of paramount importance. Deep learning has emerged as the linchpin of such endeavors. A new approach based on deep learning fusion technique is proposed by our team, which integrates frequency modulated continuous wave (FMCW) radar micro-Doppler signals, cadence-velocity diagram (CVD) signals and cepstrum (CEP) signals. This synthesis culminates in UAV classification with exceptional accuracy, surpassing 97%. In this letter, two deep learning fusion approaches leveraging the ResNet34 network were employed: data-level fusion and feature-level fusion. Empirical results unequivocally highlight the potency of deep learning information fusion—most notably, the fusion of the three spectrograms—exceeding 97% accuracy. This firmly underscores the pivotal role that deep learning fusion techniques play in amplifying precision in UAV target classification.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3371171</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Accuracy ; Classification ; Continuous radiation ; Data integration ; Deep learning ; Doppler sonar ; Radar ; Spectrograms ; Unmanned aerial vehicles</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-29e475ada4289d679e3853ceb4c811a95f54ebaef7a2f71220ededbd36af58c53</cites><orcidid>0000-0002-7869-3420 ; 0009-0005-4504-8985 ; 0000-0003-0667-7920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Ma, Chunguang</creatorcontrib><creatorcontrib>Zhao, Chaofan</creatorcontrib><creatorcontrib>Luo, Yong</creatorcontrib><title>UAV Classification Based on Deep Learning Fusion of Multidimensional UAV Micro-Doppler Image Features</title><title>IEEE geoscience and remote sensing letters</title><description>In the realm of expanding unmanned aerial vehicle (UAV) applications and types, the precision of UAV target classification is of paramount importance. Deep learning has emerged as the linchpin of such endeavors. A new approach based on deep learning fusion technique is proposed by our team, which integrates frequency modulated continuous wave (FMCW) radar micro-Doppler signals, cadence-velocity diagram (CVD) signals and cepstrum (CEP) signals. This synthesis culminates in UAV classification with exceptional accuracy, surpassing 97%. In this letter, two deep learning fusion approaches leveraging the ResNet34 network were employed: data-level fusion and feature-level fusion. Empirical results unequivocally highlight the potency of deep learning information fusion—most notably, the fusion of the three spectrograms—exceeding 97% accuracy. This firmly underscores the pivotal role that deep learning fusion techniques play in amplifying precision in UAV target classification.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Continuous radiation</subject><subject>Data integration</subject><subject>Deep learning</subject><subject>Doppler sonar</subject><subject>Radar</subject><subject>Spectrograms</subject><subject>Unmanned aerial vehicles</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkFFLwzAUhYMoOKc_wLeAz51J2izJ49zsHHQI6sS3kLU3I6Nra9I--O9t2J7u4Z7D4fAh9EjJjFKinov1x-eMEZbN0lRQKugVmlDOZUK4oNdRZzzhSv7corsQjmRMSikmCHaLb7ysTQjOutL0rm3wiwlQ4VGsADpcgPGNaw44H0J0W4u3Q927yp2giR9T41iydaVvk1XbdTV4vDmZA-AcTD94CPfoxpo6wMPlTtEuf_1aviXF-3qzXBRJyRjvE6YgE9xUJmNSVXOhIJU8LWGflZJSo7jlGewNWGGYFZQxAhVU-yqdG8tlydMpejr3dr79HSD0-tgOflwYNFOZkEwoElP0nBoHh-DB6s67k_F_mhIdaepIU0ea-kIz_Qdx4Ghs</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chen, Xu</creator><creator>Ma, Chunguang</creator><creator>Zhao, Chaofan</creator><creator>Luo, Yong</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7869-3420</orcidid><orcidid>https://orcid.org/0009-0005-4504-8985</orcidid><orcidid>https://orcid.org/0000-0003-0667-7920</orcidid></search><sort><creationdate>2024</creationdate><title>UAV Classification Based on Deep Learning Fusion of Multidimensional UAV Micro-Doppler Image Features</title><author>Chen, Xu ; Ma, Chunguang ; Zhao, Chaofan ; Luo, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-29e475ada4289d679e3853ceb4c811a95f54ebaef7a2f71220ededbd36af58c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Continuous radiation</topic><topic>Data integration</topic><topic>Deep learning</topic><topic>Doppler sonar</topic><topic>Radar</topic><topic>Spectrograms</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Ma, Chunguang</creatorcontrib><creatorcontrib>Zhao, Chaofan</creatorcontrib><creatorcontrib>Luo, Yong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xu</au><au>Ma, Chunguang</au><au>Zhao, Chaofan</au><au>Luo, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UAV Classification Based on Deep Learning Fusion of Multidimensional UAV Micro-Doppler Image Features</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><abstract>In the realm of expanding unmanned aerial vehicle (UAV) applications and types, the precision of UAV target classification is of paramount importance. Deep learning has emerged as the linchpin of such endeavors. A new approach based on deep learning fusion technique is proposed by our team, which integrates frequency modulated continuous wave (FMCW) radar micro-Doppler signals, cadence-velocity diagram (CVD) signals and cepstrum (CEP) signals. This synthesis culminates in UAV classification with exceptional accuracy, surpassing 97%. In this letter, two deep learning fusion approaches leveraging the ResNet34 network were employed: data-level fusion and feature-level fusion. Empirical results unequivocally highlight the potency of deep learning information fusion—most notably, the fusion of the three spectrograms—exceeding 97% accuracy. This firmly underscores the pivotal role that deep learning fusion techniques play in amplifying precision in UAV target classification.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/LGRS.2024.3371171</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7869-3420</orcidid><orcidid>https://orcid.org/0009-0005-4504-8985</orcidid><orcidid>https://orcid.org/0000-0003-0667-7920</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_2947827905
source IEEE Electronic Library (IEL)
subjects Accuracy
Classification
Continuous radiation
Data integration
Deep learning
Doppler sonar
Radar
Spectrograms
Unmanned aerial vehicles
title UAV Classification Based on Deep Learning Fusion of Multidimensional UAV Micro-Doppler Image Features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UAV%20Classification%20Based%20on%20Deep%20Learning%20Fusion%20of%20Multidimensional%20UAV%20Micro-Doppler%20Image%20Features&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Chen,%20Xu&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft_id=info:doi/10.1109/LGRS.2024.3371171&rft_dat=%3Cproquest_cross%3E2947827905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2947827905&rft_id=info:pmid/&rfr_iscdi=true