Spatially Arranged Relay Coils to Improve the Misalignment Tolerance at an Enhanced Transfer Distance

Wireless power transfer (WPT) systems use relay coils to increase output power over longer distances. This article presents a novel arrangement of distributed relay coils that improves lateral misalignment tolerance at high transfer distances. The relay coils are optimized using techniques based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2024-03, Vol.72 (3), p.2171-2180
Hauptverfasser: Jain, Sagar, Bharadwaj, Ananth, Sharma, Ashwani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2180
container_issue 3
container_start_page 2171
container_title IEEE transactions on antennas and propagation
container_volume 72
creator Jain, Sagar
Bharadwaj, Ananth
Sharma, Ashwani
description Wireless power transfer (WPT) systems use relay coils to increase output power over longer distances. This article presents a novel arrangement of distributed relay coils that improves lateral misalignment tolerance at high transfer distances. The relay coils are optimized using techniques based on a magnetic field forming method by employing an EM simulator to determine the position and geometrical parameters of the relay coils. The optimized design consists of five relay coils, four above the transmitter (Tx) coil's periphery and one above the center. The proposed design enhances the uniformity of the magnetic field in the receiver (Rx) region, enabling greater freedom in Rx coil displacement. The authors evaluated the design's performance based on the achieved uniformity factor of the magnetic field and mutual inductance, which are determined as {\text {UF}_{\text {H}}=61.22\%} and {\text {UF}_{\text {M}}=15.28\%} , respectively, at a transfer distance of 100 mm. The authors fabricated the relay coils using Litz wire on a transparent arsenic sheet at different heights to validate the proposed design. After that, the magnetic field, transmission coefficient ( {\text {S}_{21}} ), and power transfer efficiency (PTE) profiles are experimentally measured. The measured results are found to be consistent with the simulated findings, demonstrating the effectiveness of the proposed relay coil arrangements.
doi_str_mv 10.1109/TAP.2024.3352234
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2947827098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10403807</ieee_id><sourcerecordid>2947827098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-d9f0c2ad2ad9401e208c4127e61a7a90e9a421456d07320438512cb7585da6d83</originalsourceid><addsrcrecordid>eNpNUMFKAzEUDKJgrd49eAh43pq8ZHeTY6lVCxVFV_AW4u7bdst2tyap0L83Sz0IDx4zzLw3DCHXnE04Z_qumL5OgIGcCJECCHlCRjxNVQIA_JSMGOMq0ZB9npML7zcRSiXliOD7zobGtu2BTp2z3Qor-oatPdBZ37Sehp4utjvX_yANa6TPjbdts-q22AVa9C1GS4nUBmo7Ou_WA6poEVlfo6P3jQ8DdUnOatt6vPrbY_LxMC9mT8ny5XExmy6TEjSEpNI1K8FWcbRkHIGpUnLIMeM2t5qhthK4TLOK5QKYFCrlUH7lqUorm1VKjMnt8W5M_L1HH8ym37suvjSgZa4gZ3pQsaOqdL33Dmuzc83WuoPhzAxlmlimGco0f2VGy83R0iDiP7lkQsUsv4PTb54</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2947827098</pqid></control><display><type>article</type><title>Spatially Arranged Relay Coils to Improve the Misalignment Tolerance at an Enhanced Transfer Distance</title><source>IEEE Electronic Library (IEL)</source><creator>Jain, Sagar ; Bharadwaj, Ananth ; Sharma, Ashwani</creator><creatorcontrib>Jain, Sagar ; Bharadwaj, Ananth ; Sharma, Ashwani</creatorcontrib><description><![CDATA[Wireless power transfer (WPT) systems use relay coils to increase output power over longer distances. This article presents a novel arrangement of distributed relay coils that improves lateral misalignment tolerance at high transfer distances. The relay coils are optimized using techniques based on a magnetic field forming method by employing an EM simulator to determine the position and geometrical parameters of the relay coils. The optimized design consists of five relay coils, four above the transmitter (Tx) coil's periphery and one above the center. The proposed design enhances the uniformity of the magnetic field in the receiver (Rx) region, enabling greater freedom in Rx coil displacement. The authors evaluated the design's performance based on the achieved uniformity factor of the magnetic field and mutual inductance, which are determined as <inline-formula> <tex-math notation="LaTeX">{\text {UF}_{\text {H}}=61.22\%} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\text {UF}_{\text {M}}=15.28\%} </tex-math></inline-formula>, respectively, at a transfer distance of 100 mm. The authors fabricated the relay coils using Litz wire on a transparent arsenic sheet at different heights to validate the proposed design. After that, the magnetic field, transmission coefficient (<inline-formula> <tex-math notation="LaTeX">{\text {S}_{21}} </tex-math></inline-formula>), and power transfer efficiency (PTE) profiles are experimentally measured. The measured results are found to be consistent with the simulated findings, demonstrating the effectiveness of the proposed relay coil arrangements.]]></description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2024.3352234</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coil antenna ; Coils ; Design optimization ; Inductance ; lateral misalignment ; magnetic field ; Magnetic fields ; magnetic resonant coupling ; Metamaterials ; Misalignment ; misalignment tolerance ; mutual inductance ; Optimization ; Receivers ; Relay ; relay coil array ; Relays ; Resistance ; transmission coefficient (S21) ; wireless power transfer (WPT) ; Wireless power transmission</subject><ispartof>IEEE transactions on antennas and propagation, 2024-03, Vol.72 (3), p.2171-2180</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-d9f0c2ad2ad9401e208c4127e61a7a90e9a421456d07320438512cb7585da6d83</citedby><cites>FETCH-LOGICAL-c292t-d9f0c2ad2ad9401e208c4127e61a7a90e9a421456d07320438512cb7585da6d83</cites><orcidid>0000-0002-5297-4232 ; 0000-0001-7601-2903 ; 0000-0002-1117-1329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10403807$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10403807$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jain, Sagar</creatorcontrib><creatorcontrib>Bharadwaj, Ananth</creatorcontrib><creatorcontrib>Sharma, Ashwani</creatorcontrib><title>Spatially Arranged Relay Coils to Improve the Misalignment Tolerance at an Enhanced Transfer Distance</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description><![CDATA[Wireless power transfer (WPT) systems use relay coils to increase output power over longer distances. This article presents a novel arrangement of distributed relay coils that improves lateral misalignment tolerance at high transfer distances. The relay coils are optimized using techniques based on a magnetic field forming method by employing an EM simulator to determine the position and geometrical parameters of the relay coils. The optimized design consists of five relay coils, four above the transmitter (Tx) coil's periphery and one above the center. The proposed design enhances the uniformity of the magnetic field in the receiver (Rx) region, enabling greater freedom in Rx coil displacement. The authors evaluated the design's performance based on the achieved uniformity factor of the magnetic field and mutual inductance, which are determined as <inline-formula> <tex-math notation="LaTeX">{\text {UF}_{\text {H}}=61.22\%} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\text {UF}_{\text {M}}=15.28\%} </tex-math></inline-formula>, respectively, at a transfer distance of 100 mm. The authors fabricated the relay coils using Litz wire on a transparent arsenic sheet at different heights to validate the proposed design. After that, the magnetic field, transmission coefficient (<inline-formula> <tex-math notation="LaTeX">{\text {S}_{21}} </tex-math></inline-formula>), and power transfer efficiency (PTE) profiles are experimentally measured. The measured results are found to be consistent with the simulated findings, demonstrating the effectiveness of the proposed relay coil arrangements.]]></description><subject>Coil antenna</subject><subject>Coils</subject><subject>Design optimization</subject><subject>Inductance</subject><subject>lateral misalignment</subject><subject>magnetic field</subject><subject>Magnetic fields</subject><subject>magnetic resonant coupling</subject><subject>Metamaterials</subject><subject>Misalignment</subject><subject>misalignment tolerance</subject><subject>mutual inductance</subject><subject>Optimization</subject><subject>Receivers</subject><subject>Relay</subject><subject>relay coil array</subject><subject>Relays</subject><subject>Resistance</subject><subject>transmission coefficient (S21)</subject><subject>wireless power transfer (WPT)</subject><subject>Wireless power transmission</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMFKAzEUDKJgrd49eAh43pq8ZHeTY6lVCxVFV_AW4u7bdst2tyap0L83Sz0IDx4zzLw3DCHXnE04Z_qumL5OgIGcCJECCHlCRjxNVQIA_JSMGOMq0ZB9npML7zcRSiXliOD7zobGtu2BTp2z3Qor-oatPdBZ37Sehp4utjvX_yANa6TPjbdts-q22AVa9C1GS4nUBmo7Ou_WA6poEVlfo6P3jQ8DdUnOatt6vPrbY_LxMC9mT8ny5XExmy6TEjSEpNI1K8FWcbRkHIGpUnLIMeM2t5qhthK4TLOK5QKYFCrlUH7lqUorm1VKjMnt8W5M_L1HH8ym37suvjSgZa4gZ3pQsaOqdL33Dmuzc83WuoPhzAxlmlimGco0f2VGy83R0iDiP7lkQsUsv4PTb54</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Jain, Sagar</creator><creator>Bharadwaj, Ananth</creator><creator>Sharma, Ashwani</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5297-4232</orcidid><orcidid>https://orcid.org/0000-0001-7601-2903</orcidid><orcidid>https://orcid.org/0000-0002-1117-1329</orcidid></search><sort><creationdate>20240301</creationdate><title>Spatially Arranged Relay Coils to Improve the Misalignment Tolerance at an Enhanced Transfer Distance</title><author>Jain, Sagar ; Bharadwaj, Ananth ; Sharma, Ashwani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-d9f0c2ad2ad9401e208c4127e61a7a90e9a421456d07320438512cb7585da6d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coil antenna</topic><topic>Coils</topic><topic>Design optimization</topic><topic>Inductance</topic><topic>lateral misalignment</topic><topic>magnetic field</topic><topic>Magnetic fields</topic><topic>magnetic resonant coupling</topic><topic>Metamaterials</topic><topic>Misalignment</topic><topic>misalignment tolerance</topic><topic>mutual inductance</topic><topic>Optimization</topic><topic>Receivers</topic><topic>Relay</topic><topic>relay coil array</topic><topic>Relays</topic><topic>Resistance</topic><topic>transmission coefficient (S21)</topic><topic>wireless power transfer (WPT)</topic><topic>Wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Sagar</creatorcontrib><creatorcontrib>Bharadwaj, Ananth</creatorcontrib><creatorcontrib>Sharma, Ashwani</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jain, Sagar</au><au>Bharadwaj, Ananth</au><au>Sharma, Ashwani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially Arranged Relay Coils to Improve the Misalignment Tolerance at an Enhanced Transfer Distance</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>72</volume><issue>3</issue><spage>2171</spage><epage>2180</epage><pages>2171-2180</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract><![CDATA[Wireless power transfer (WPT) systems use relay coils to increase output power over longer distances. This article presents a novel arrangement of distributed relay coils that improves lateral misalignment tolerance at high transfer distances. The relay coils are optimized using techniques based on a magnetic field forming method by employing an EM simulator to determine the position and geometrical parameters of the relay coils. The optimized design consists of five relay coils, four above the transmitter (Tx) coil's periphery and one above the center. The proposed design enhances the uniformity of the magnetic field in the receiver (Rx) region, enabling greater freedom in Rx coil displacement. The authors evaluated the design's performance based on the achieved uniformity factor of the magnetic field and mutual inductance, which are determined as <inline-formula> <tex-math notation="LaTeX">{\text {UF}_{\text {H}}=61.22\%} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\text {UF}_{\text {M}}=15.28\%} </tex-math></inline-formula>, respectively, at a transfer distance of 100 mm. The authors fabricated the relay coils using Litz wire on a transparent arsenic sheet at different heights to validate the proposed design. After that, the magnetic field, transmission coefficient (<inline-formula> <tex-math notation="LaTeX">{\text {S}_{21}} </tex-math></inline-formula>), and power transfer efficiency (PTE) profiles are experimentally measured. The measured results are found to be consistent with the simulated findings, demonstrating the effectiveness of the proposed relay coil arrangements.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2024.3352234</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5297-4232</orcidid><orcidid>https://orcid.org/0000-0001-7601-2903</orcidid><orcidid>https://orcid.org/0000-0002-1117-1329</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2024-03, Vol.72 (3), p.2171-2180
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_2947827098
source IEEE Electronic Library (IEL)
subjects Coil antenna
Coils
Design optimization
Inductance
lateral misalignment
magnetic field
Magnetic fields
magnetic resonant coupling
Metamaterials
Misalignment
misalignment tolerance
mutual inductance
Optimization
Receivers
Relay
relay coil array
Relays
Resistance
transmission coefficient (S21)
wireless power transfer (WPT)
Wireless power transmission
title Spatially Arranged Relay Coils to Improve the Misalignment Tolerance at an Enhanced Transfer Distance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20Arranged%20Relay%20Coils%20to%20Improve%20the%20Misalignment%20Tolerance%20at%20an%20Enhanced%20Transfer%20Distance&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Jain,%20Sagar&rft.date=2024-03-01&rft.volume=72&rft.issue=3&rft.spage=2171&rft.epage=2180&rft.pages=2171-2180&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2024.3352234&rft_dat=%3Cproquest_RIE%3E2947827098%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2947827098&rft_id=info:pmid/&rft_ieee_id=10403807&rfr_iscdi=true