Spatially Arranged Relay Coils to Improve the Misalignment Tolerance at an Enhanced Transfer Distance
Wireless power transfer (WPT) systems use relay coils to increase output power over longer distances. This article presents a novel arrangement of distributed relay coils that improves lateral misalignment tolerance at high transfer distances. The relay coils are optimized using techniques based on...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2024-03, Vol.72 (3), p.2171-2180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2180 |
---|---|
container_issue | 3 |
container_start_page | 2171 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 72 |
creator | Jain, Sagar Bharadwaj, Ananth Sharma, Ashwani |
description | Wireless power transfer (WPT) systems use relay coils to increase output power over longer distances. This article presents a novel arrangement of distributed relay coils that improves lateral misalignment tolerance at high transfer distances. The relay coils are optimized using techniques based on a magnetic field forming method by employing an EM simulator to determine the position and geometrical parameters of the relay coils. The optimized design consists of five relay coils, four above the transmitter (Tx) coil's periphery and one above the center. The proposed design enhances the uniformity of the magnetic field in the receiver (Rx) region, enabling greater freedom in Rx coil displacement. The authors evaluated the design's performance based on the achieved uniformity factor of the magnetic field and mutual inductance, which are determined as {\text {UF}_{\text {H}}=61.22\%} and {\text {UF}_{\text {M}}=15.28\%} , respectively, at a transfer distance of 100 mm. The authors fabricated the relay coils using Litz wire on a transparent arsenic sheet at different heights to validate the proposed design. After that, the magnetic field, transmission coefficient ( {\text {S}_{21}} ), and power transfer efficiency (PTE) profiles are experimentally measured. The measured results are found to be consistent with the simulated findings, demonstrating the effectiveness of the proposed relay coil arrangements. |
doi_str_mv | 10.1109/TAP.2024.3352234 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2947827098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10403807</ieee_id><sourcerecordid>2947827098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-d9f0c2ad2ad9401e208c4127e61a7a90e9a421456d07320438512cb7585da6d83</originalsourceid><addsrcrecordid>eNpNUMFKAzEUDKJgrd49eAh43pq8ZHeTY6lVCxVFV_AW4u7bdst2tyap0L83Sz0IDx4zzLw3DCHXnE04Z_qumL5OgIGcCJECCHlCRjxNVQIA_JSMGOMq0ZB9npML7zcRSiXliOD7zobGtu2BTp2z3Qor-oatPdBZ37Sehp4utjvX_yANa6TPjbdts-q22AVa9C1GS4nUBmo7Ou_WA6poEVlfo6P3jQ8DdUnOatt6vPrbY_LxMC9mT8ny5XExmy6TEjSEpNI1K8FWcbRkHIGpUnLIMeM2t5qhthK4TLOK5QKYFCrlUH7lqUorm1VKjMnt8W5M_L1HH8ym37suvjSgZa4gZ3pQsaOqdL33Dmuzc83WuoPhzAxlmlimGco0f2VGy83R0iDiP7lkQsUsv4PTb54</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2947827098</pqid></control><display><type>article</type><title>Spatially Arranged Relay Coils to Improve the Misalignment Tolerance at an Enhanced Transfer Distance</title><source>IEEE Electronic Library (IEL)</source><creator>Jain, Sagar ; Bharadwaj, Ananth ; Sharma, Ashwani</creator><creatorcontrib>Jain, Sagar ; Bharadwaj, Ananth ; Sharma, Ashwani</creatorcontrib><description><![CDATA[Wireless power transfer (WPT) systems use relay coils to increase output power over longer distances. This article presents a novel arrangement of distributed relay coils that improves lateral misalignment tolerance at high transfer distances. The relay coils are optimized using techniques based on a magnetic field forming method by employing an EM simulator to determine the position and geometrical parameters of the relay coils. The optimized design consists of five relay coils, four above the transmitter (Tx) coil's periphery and one above the center. The proposed design enhances the uniformity of the magnetic field in the receiver (Rx) region, enabling greater freedom in Rx coil displacement. The authors evaluated the design's performance based on the achieved uniformity factor of the magnetic field and mutual inductance, which are determined as <inline-formula> <tex-math notation="LaTeX">{\text {UF}_{\text {H}}=61.22\%} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\text {UF}_{\text {M}}=15.28\%} </tex-math></inline-formula>, respectively, at a transfer distance of 100 mm. The authors fabricated the relay coils using Litz wire on a transparent arsenic sheet at different heights to validate the proposed design. After that, the magnetic field, transmission coefficient (<inline-formula> <tex-math notation="LaTeX">{\text {S}_{21}} </tex-math></inline-formula>), and power transfer efficiency (PTE) profiles are experimentally measured. The measured results are found to be consistent with the simulated findings, demonstrating the effectiveness of the proposed relay coil arrangements.]]></description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2024.3352234</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coil antenna ; Coils ; Design optimization ; Inductance ; lateral misalignment ; magnetic field ; Magnetic fields ; magnetic resonant coupling ; Metamaterials ; Misalignment ; misalignment tolerance ; mutual inductance ; Optimization ; Receivers ; Relay ; relay coil array ; Relays ; Resistance ; transmission coefficient (S21) ; wireless power transfer (WPT) ; Wireless power transmission</subject><ispartof>IEEE transactions on antennas and propagation, 2024-03, Vol.72 (3), p.2171-2180</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-d9f0c2ad2ad9401e208c4127e61a7a90e9a421456d07320438512cb7585da6d83</citedby><cites>FETCH-LOGICAL-c292t-d9f0c2ad2ad9401e208c4127e61a7a90e9a421456d07320438512cb7585da6d83</cites><orcidid>0000-0002-5297-4232 ; 0000-0001-7601-2903 ; 0000-0002-1117-1329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10403807$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10403807$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jain, Sagar</creatorcontrib><creatorcontrib>Bharadwaj, Ananth</creatorcontrib><creatorcontrib>Sharma, Ashwani</creatorcontrib><title>Spatially Arranged Relay Coils to Improve the Misalignment Tolerance at an Enhanced Transfer Distance</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description><![CDATA[Wireless power transfer (WPT) systems use relay coils to increase output power over longer distances. This article presents a novel arrangement of distributed relay coils that improves lateral misalignment tolerance at high transfer distances. The relay coils are optimized using techniques based on a magnetic field forming method by employing an EM simulator to determine the position and geometrical parameters of the relay coils. The optimized design consists of five relay coils, four above the transmitter (Tx) coil's periphery and one above the center. The proposed design enhances the uniformity of the magnetic field in the receiver (Rx) region, enabling greater freedom in Rx coil displacement. The authors evaluated the design's performance based on the achieved uniformity factor of the magnetic field and mutual inductance, which are determined as <inline-formula> <tex-math notation="LaTeX">{\text {UF}_{\text {H}}=61.22\%} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\text {UF}_{\text {M}}=15.28\%} </tex-math></inline-formula>, respectively, at a transfer distance of 100 mm. The authors fabricated the relay coils using Litz wire on a transparent arsenic sheet at different heights to validate the proposed design. After that, the magnetic field, transmission coefficient (<inline-formula> <tex-math notation="LaTeX">{\text {S}_{21}} </tex-math></inline-formula>), and power transfer efficiency (PTE) profiles are experimentally measured. The measured results are found to be consistent with the simulated findings, demonstrating the effectiveness of the proposed relay coil arrangements.]]></description><subject>Coil antenna</subject><subject>Coils</subject><subject>Design optimization</subject><subject>Inductance</subject><subject>lateral misalignment</subject><subject>magnetic field</subject><subject>Magnetic fields</subject><subject>magnetic resonant coupling</subject><subject>Metamaterials</subject><subject>Misalignment</subject><subject>misalignment tolerance</subject><subject>mutual inductance</subject><subject>Optimization</subject><subject>Receivers</subject><subject>Relay</subject><subject>relay coil array</subject><subject>Relays</subject><subject>Resistance</subject><subject>transmission coefficient (S21)</subject><subject>wireless power transfer (WPT)</subject><subject>Wireless power transmission</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMFKAzEUDKJgrd49eAh43pq8ZHeTY6lVCxVFV_AW4u7bdst2tyap0L83Sz0IDx4zzLw3DCHXnE04Z_qumL5OgIGcCJECCHlCRjxNVQIA_JSMGOMq0ZB9npML7zcRSiXliOD7zobGtu2BTp2z3Qor-oatPdBZ37Sehp4utjvX_yANa6TPjbdts-q22AVa9C1GS4nUBmo7Ou_WA6poEVlfo6P3jQ8DdUnOatt6vPrbY_LxMC9mT8ny5XExmy6TEjSEpNI1K8FWcbRkHIGpUnLIMeM2t5qhthK4TLOK5QKYFCrlUH7lqUorm1VKjMnt8W5M_L1HH8ym37suvjSgZa4gZ3pQsaOqdL33Dmuzc83WuoPhzAxlmlimGco0f2VGy83R0iDiP7lkQsUsv4PTb54</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Jain, Sagar</creator><creator>Bharadwaj, Ananth</creator><creator>Sharma, Ashwani</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5297-4232</orcidid><orcidid>https://orcid.org/0000-0001-7601-2903</orcidid><orcidid>https://orcid.org/0000-0002-1117-1329</orcidid></search><sort><creationdate>20240301</creationdate><title>Spatially Arranged Relay Coils to Improve the Misalignment Tolerance at an Enhanced Transfer Distance</title><author>Jain, Sagar ; Bharadwaj, Ananth ; Sharma, Ashwani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-d9f0c2ad2ad9401e208c4127e61a7a90e9a421456d07320438512cb7585da6d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coil antenna</topic><topic>Coils</topic><topic>Design optimization</topic><topic>Inductance</topic><topic>lateral misalignment</topic><topic>magnetic field</topic><topic>Magnetic fields</topic><topic>magnetic resonant coupling</topic><topic>Metamaterials</topic><topic>Misalignment</topic><topic>misalignment tolerance</topic><topic>mutual inductance</topic><topic>Optimization</topic><topic>Receivers</topic><topic>Relay</topic><topic>relay coil array</topic><topic>Relays</topic><topic>Resistance</topic><topic>transmission coefficient (S21)</topic><topic>wireless power transfer (WPT)</topic><topic>Wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Sagar</creatorcontrib><creatorcontrib>Bharadwaj, Ananth</creatorcontrib><creatorcontrib>Sharma, Ashwani</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jain, Sagar</au><au>Bharadwaj, Ananth</au><au>Sharma, Ashwani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially Arranged Relay Coils to Improve the Misalignment Tolerance at an Enhanced Transfer Distance</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>72</volume><issue>3</issue><spage>2171</spage><epage>2180</epage><pages>2171-2180</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract><![CDATA[Wireless power transfer (WPT) systems use relay coils to increase output power over longer distances. This article presents a novel arrangement of distributed relay coils that improves lateral misalignment tolerance at high transfer distances. The relay coils are optimized using techniques based on a magnetic field forming method by employing an EM simulator to determine the position and geometrical parameters of the relay coils. The optimized design consists of five relay coils, four above the transmitter (Tx) coil's periphery and one above the center. The proposed design enhances the uniformity of the magnetic field in the receiver (Rx) region, enabling greater freedom in Rx coil displacement. The authors evaluated the design's performance based on the achieved uniformity factor of the magnetic field and mutual inductance, which are determined as <inline-formula> <tex-math notation="LaTeX">{\text {UF}_{\text {H}}=61.22\%} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\text {UF}_{\text {M}}=15.28\%} </tex-math></inline-formula>, respectively, at a transfer distance of 100 mm. The authors fabricated the relay coils using Litz wire on a transparent arsenic sheet at different heights to validate the proposed design. After that, the magnetic field, transmission coefficient (<inline-formula> <tex-math notation="LaTeX">{\text {S}_{21}} </tex-math></inline-formula>), and power transfer efficiency (PTE) profiles are experimentally measured. The measured results are found to be consistent with the simulated findings, demonstrating the effectiveness of the proposed relay coil arrangements.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2024.3352234</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5297-4232</orcidid><orcidid>https://orcid.org/0000-0001-7601-2903</orcidid><orcidid>https://orcid.org/0000-0002-1117-1329</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2024-03, Vol.72 (3), p.2171-2180 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_journals_2947827098 |
source | IEEE Electronic Library (IEL) |
subjects | Coil antenna Coils Design optimization Inductance lateral misalignment magnetic field Magnetic fields magnetic resonant coupling Metamaterials Misalignment misalignment tolerance mutual inductance Optimization Receivers Relay relay coil array Relays Resistance transmission coefficient (S21) wireless power transfer (WPT) Wireless power transmission |
title | Spatially Arranged Relay Coils to Improve the Misalignment Tolerance at an Enhanced Transfer Distance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20Arranged%20Relay%20Coils%20to%20Improve%20the%20Misalignment%20Tolerance%20at%20an%20Enhanced%20Transfer%20Distance&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Jain,%20Sagar&rft.date=2024-03-01&rft.volume=72&rft.issue=3&rft.spage=2171&rft.epage=2180&rft.pages=2171-2180&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2024.3352234&rft_dat=%3Cproquest_RIE%3E2947827098%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2947827098&rft_id=info:pmid/&rft_ieee_id=10403807&rfr_iscdi=true |