Semi-Supervised Adversarial Learning for Attribute-Aware Photo Aesthetic Assessment
Aesthetic attributes are crucial for aesthetics because they explicitly present some photo quality cues that a human expert might use to evaluate a photo's aesthetic quality. However, annotating aesthetic attributes is a time-consuming, costly, and error-prone task, which leads to the issue tha...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2024, Vol.26, p.4086-4096 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4096 |
---|---|
container_issue | |
container_start_page | 4086 |
container_title | IEEE transactions on multimedia |
container_volume | 26 |
creator | Shu, Yangyang Li, Qian Liu, Lingqiao Xu, Guandong |
description | Aesthetic attributes are crucial for aesthetics because they explicitly present some photo quality cues that a human expert might use to evaluate a photo's aesthetic quality. However, annotating aesthetic attributes is a time-consuming, costly, and error-prone task, which leads to the issue that photos available are partially annotated with attributes. To alleviate this issue, we propose a novel semi-supervised adversarial learning method for photo aesthetic assessment from partially attribute-annotated photos, which can greatly reduce the reliance on manual attribute annotation. Specifically, the proposed method consists of a score-attributes generator R, a photo generator G, and a discriminator D. The score-attributes generator learns the aesthetic score and attributes simultaneously to capture their dependencies and construct better feature representations. The photo generator reconstructs the photo by feeding aesthetic attributes, score, and informative feature representation. A discriminator is used to force the convergence of the features-attributes-score tuples generated from the score-attributes generator, the photo generator, and the ground-truth distribution in labeled data for training data. The proposed method significantly outperforms the state of the art, increasing the Spearman rank-order correlation coefficient (SRCC) from the existing best reported of 0.726 to 0.761 on Aesthetic and attributes database and 0.756 to 0.774 on Aesthetic visual analysis database , respectively. |
doi_str_mv | 10.1109/TMM.2021.3117709 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2947400042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9563269</ieee_id><sourcerecordid>2947400042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-a3d42de13e179707bc07f4ed0da8063696b057316b4531a7bbff4acf2a95ec0c3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SZ3U3WPYbiF7QotJ6XTTKxW9qk7m4q_ntTWjzNHJ73neFh7BZhggj6YTmfTzhwnAhEpUCfsRFqiSmAUufDnnFINUe4ZFchrAFQZqBGbLGgrUsX_Y783gWqk6Lekw_WO7tJZmR969qvpOl8UsToXdlHSosf6yn5WHWxSwoKcUXRVUkRAoWwpTZes4vGbgLdnOaYfT4_Laev6ez95W1azNJKCBFTK2rJa0JBqLQCVVagGkk11PYRcpHrvIRMCcxLmQm0qiybRtqq4VZnVEElxuz-2Lvz3Xc_PGLWXe_b4aThWioJAJIPFBypyncheGrMzrut9b8GwRzUmUGdOagzJ3VD5O4YcUT0j-ssFzzX4g8aamp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2947400042</pqid></control><display><type>article</type><title>Semi-Supervised Adversarial Learning for Attribute-Aware Photo Aesthetic Assessment</title><source>IEEE Electronic Library (IEL)</source><creator>Shu, Yangyang ; Li, Qian ; Liu, Lingqiao ; Xu, Guandong</creator><creatorcontrib>Shu, Yangyang ; Li, Qian ; Liu, Lingqiao ; Xu, Guandong</creatorcontrib><description><![CDATA[Aesthetic attributes are crucial for aesthetics because they explicitly present some photo quality cues that a human expert might use to evaluate a photo's aesthetic quality. However, annotating aesthetic attributes is a time-consuming, costly, and error-prone task, which leads to the issue that photos available are partially annotated with attributes. To alleviate this issue, we propose a novel semi-supervised adversarial learning method for photo aesthetic assessment from partially attribute-annotated photos, which can greatly reduce the reliance on manual attribute annotation. Specifically, the proposed method consists of a score-attributes generator <inline-formula><tex-math notation="LaTeX">R</tex-math></inline-formula>, a photo generator <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula>, and a discriminator <inline-formula><tex-math notation="LaTeX">D</tex-math></inline-formula>. The score-attributes generator learns the aesthetic score and attributes simultaneously to capture their dependencies and construct better feature representations. The photo generator reconstructs the photo by feeding aesthetic attributes, score, and informative feature representation. A discriminator is used to force the convergence of the features-attributes-score tuples generated from the score-attributes generator, the photo generator, and the ground-truth distribution in labeled data for training data. The proposed method significantly outperforms the state of the art, increasing the Spearman rank-order correlation coefficient (SRCC) from the existing best reported of 0.726 to 0.761 on Aesthetic and attributes database and 0.756 to 0.774 on Aesthetic visual analysis database , respectively.]]></description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2021.3117709</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adversarial machine learning ; aesthetic attributes ; Aesthetics ; Annotations ; Correlation coefficients ; Discriminators ; Generators ; Image color analysis ; Learning ; photo aesthetic assessment ; Representations ; Semi-supervised adversarial learning ; Semisupervised learning ; Task analysis ; Training</subject><ispartof>IEEE transactions on multimedia, 2024, Vol.26, p.4086-4096</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-a3d42de13e179707bc07f4ed0da8063696b057316b4531a7bbff4acf2a95ec0c3</citedby><cites>FETCH-LOGICAL-c333t-a3d42de13e179707bc07f4ed0da8063696b057316b4531a7bbff4acf2a95ec0c3</cites><orcidid>0000-0002-8308-9551 ; 0000-0001-6319-6037 ; 0000-0003-3584-795X ; 0000-0003-4493-6663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9563269$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9563269$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shu, Yangyang</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Liu, Lingqiao</creatorcontrib><creatorcontrib>Xu, Guandong</creatorcontrib><title>Semi-Supervised Adversarial Learning for Attribute-Aware Photo Aesthetic Assessment</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description><![CDATA[Aesthetic attributes are crucial for aesthetics because they explicitly present some photo quality cues that a human expert might use to evaluate a photo's aesthetic quality. However, annotating aesthetic attributes is a time-consuming, costly, and error-prone task, which leads to the issue that photos available are partially annotated with attributes. To alleviate this issue, we propose a novel semi-supervised adversarial learning method for photo aesthetic assessment from partially attribute-annotated photos, which can greatly reduce the reliance on manual attribute annotation. Specifically, the proposed method consists of a score-attributes generator <inline-formula><tex-math notation="LaTeX">R</tex-math></inline-formula>, a photo generator <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula>, and a discriminator <inline-formula><tex-math notation="LaTeX">D</tex-math></inline-formula>. The score-attributes generator learns the aesthetic score and attributes simultaneously to capture their dependencies and construct better feature representations. The photo generator reconstructs the photo by feeding aesthetic attributes, score, and informative feature representation. A discriminator is used to force the convergence of the features-attributes-score tuples generated from the score-attributes generator, the photo generator, and the ground-truth distribution in labeled data for training data. The proposed method significantly outperforms the state of the art, increasing the Spearman rank-order correlation coefficient (SRCC) from the existing best reported of 0.726 to 0.761 on Aesthetic and attributes database and 0.756 to 0.774 on Aesthetic visual analysis database , respectively.]]></description><subject>Adversarial machine learning</subject><subject>aesthetic attributes</subject><subject>Aesthetics</subject><subject>Annotations</subject><subject>Correlation coefficients</subject><subject>Discriminators</subject><subject>Generators</subject><subject>Image color analysis</subject><subject>Learning</subject><subject>photo aesthetic assessment</subject><subject>Representations</subject><subject>Semi-supervised adversarial learning</subject><subject>Semisupervised learning</subject><subject>Task analysis</subject><subject>Training</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SZ3U3WPYbiF7QotJ6XTTKxW9qk7m4q_ntTWjzNHJ73neFh7BZhggj6YTmfTzhwnAhEpUCfsRFqiSmAUufDnnFINUe4ZFchrAFQZqBGbLGgrUsX_Y783gWqk6Lekw_WO7tJZmR969qvpOl8UsToXdlHSosf6yn5WHWxSwoKcUXRVUkRAoWwpTZes4vGbgLdnOaYfT4_Laev6ez95W1azNJKCBFTK2rJa0JBqLQCVVagGkk11PYRcpHrvIRMCcxLmQm0qiybRtqq4VZnVEElxuz-2Lvz3Xc_PGLWXe_b4aThWioJAJIPFBypyncheGrMzrut9b8GwRzUmUGdOagzJ3VD5O4YcUT0j-ssFzzX4g8aamp8</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Shu, Yangyang</creator><creator>Li, Qian</creator><creator>Liu, Lingqiao</creator><creator>Xu, Guandong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8308-9551</orcidid><orcidid>https://orcid.org/0000-0001-6319-6037</orcidid><orcidid>https://orcid.org/0000-0003-3584-795X</orcidid><orcidid>https://orcid.org/0000-0003-4493-6663</orcidid></search><sort><creationdate>2024</creationdate><title>Semi-Supervised Adversarial Learning for Attribute-Aware Photo Aesthetic Assessment</title><author>Shu, Yangyang ; Li, Qian ; Liu, Lingqiao ; Xu, Guandong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-a3d42de13e179707bc07f4ed0da8063696b057316b4531a7bbff4acf2a95ec0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adversarial machine learning</topic><topic>aesthetic attributes</topic><topic>Aesthetics</topic><topic>Annotations</topic><topic>Correlation coefficients</topic><topic>Discriminators</topic><topic>Generators</topic><topic>Image color analysis</topic><topic>Learning</topic><topic>photo aesthetic assessment</topic><topic>Representations</topic><topic>Semi-supervised adversarial learning</topic><topic>Semisupervised learning</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Yangyang</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Liu, Lingqiao</creatorcontrib><creatorcontrib>Xu, Guandong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shu, Yangyang</au><au>Li, Qian</au><au>Liu, Lingqiao</au><au>Xu, Guandong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-Supervised Adversarial Learning for Attribute-Aware Photo Aesthetic Assessment</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2024</date><risdate>2024</risdate><volume>26</volume><spage>4086</spage><epage>4096</epage><pages>4086-4096</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract><![CDATA[Aesthetic attributes are crucial for aesthetics because they explicitly present some photo quality cues that a human expert might use to evaluate a photo's aesthetic quality. However, annotating aesthetic attributes is a time-consuming, costly, and error-prone task, which leads to the issue that photos available are partially annotated with attributes. To alleviate this issue, we propose a novel semi-supervised adversarial learning method for photo aesthetic assessment from partially attribute-annotated photos, which can greatly reduce the reliance on manual attribute annotation. Specifically, the proposed method consists of a score-attributes generator <inline-formula><tex-math notation="LaTeX">R</tex-math></inline-formula>, a photo generator <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula>, and a discriminator <inline-formula><tex-math notation="LaTeX">D</tex-math></inline-formula>. The score-attributes generator learns the aesthetic score and attributes simultaneously to capture their dependencies and construct better feature representations. The photo generator reconstructs the photo by feeding aesthetic attributes, score, and informative feature representation. A discriminator is used to force the convergence of the features-attributes-score tuples generated from the score-attributes generator, the photo generator, and the ground-truth distribution in labeled data for training data. The proposed method significantly outperforms the state of the art, increasing the Spearman rank-order correlation coefficient (SRCC) from the existing best reported of 0.726 to 0.761 on Aesthetic and attributes database and 0.756 to 0.774 on Aesthetic visual analysis database , respectively.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2021.3117709</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8308-9551</orcidid><orcidid>https://orcid.org/0000-0001-6319-6037</orcidid><orcidid>https://orcid.org/0000-0003-3584-795X</orcidid><orcidid>https://orcid.org/0000-0003-4493-6663</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2024, Vol.26, p.4086-4096 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_2947400042 |
source | IEEE Electronic Library (IEL) |
subjects | Adversarial machine learning aesthetic attributes Aesthetics Annotations Correlation coefficients Discriminators Generators Image color analysis Learning photo aesthetic assessment Representations Semi-supervised adversarial learning Semisupervised learning Task analysis Training |
title | Semi-Supervised Adversarial Learning for Attribute-Aware Photo Aesthetic Assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-Supervised%20Adversarial%20Learning%20for%20Attribute-Aware%20Photo%20Aesthetic%20Assessment&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Shu,%20Yangyang&rft.date=2024&rft.volume=26&rft.spage=4086&rft.epage=4096&rft.pages=4086-4096&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2021.3117709&rft_dat=%3Cproquest_RIE%3E2947400042%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2947400042&rft_id=info:pmid/&rft_ieee_id=9563269&rfr_iscdi=true |