Strain-induced magnetic anisotropy of multi-domain epitaxial EuPd2 thin films
Europium intermetallic compounds show a variety of different ground states and anomalous physical properties due to the interactions between the localized 4f electrons and the delocalized electronic states. Europium is also the most reactive of the rare earth metals which might be the reason why ver...
Gespeichert in:
Veröffentlicht in: | JPhys materials 2024-04, Vol.7 (2), p.025008 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 025008 |
container_title | JPhys materials |
container_volume | 7 |
creator | Schuck, Alfons G Kölsch, Sebastian Valadkhani, Adrian Mazin, Igor I Valentí, Roser Huth, Michael |
description | Europium intermetallic compounds show a variety of different ground states and anomalous physical properties due to the interactions between the localized 4f electrons and the delocalized electronic states. Europium is also the most reactive of the rare earth metals which might be the reason why very few works are concerned with the properties of Eu-based thin films. Here we address the low-temperature magnetic properties of ferromagnetic EuPd2 thin films prepared by molecular beam epitaxy. The epitaxial (111)-oriented thin films grow on MgO (100) with eight different domain orientations. We analyze the low-temperature magnetic hysteresis behavior by means of micromagnetic simulations taking the multi-domain morphology explicitly into account and quantify the magnetic crystal anisotropy contribution. By ab initio calculations we trace back the microscopic origin of the magnetic anisotropy to thin film-induced uniform biaxial strain. |
doi_str_mv | 10.1088/2515-7639/ad2d5e |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2942442367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3fdd970280a54a5dae1adfda964bac1c</doaj_id><sourcerecordid>2942442367</sourcerecordid><originalsourceid>FETCH-LOGICAL-d363t-1759e47ff042d5111cbd27467803057bca9cad0ca9f89b7a1d1e713ad4bf4fab3</originalsourceid><addsrcrecordid>eNptkEtLxDAUhYsgOKh7lwV3Yp282rRLGXwMjCio63Dbm2iGtqlpCs6_N2NFN64uHD4O535JckbJFSVluWQ5zTNZ8GoJyDDXB8niNzpKTsdxSwhhshJEyEXy8Bw82D6zPU6NxrSDt14H26TQ29EF74Zd6kzaTW2wGbousqkebIBPC216Mz0hS8N7DI1tu_EkOTTQjvr05x4nr7c3L6v7bPN4t15dbzLkBQ8ZlXmlhTSGiLiQUtrUyKQoZEk4yWXdQNUAknhMWdUSKFItKQcUtREGan6crOdedLBVg7cd-J1yYNV34PybAh-_aLXiBrGShJUEcgE5gqaABqEqRA0NbWLX-dw1ePcx6TGorZt8H-crVgkmBOOFjNTlTFk3_AGUqL1ztRes9oLV7DziF__g26GDoL2SiinCckJKNaDhX_2Dhh4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2942442367</pqid></control><display><type>article</type><title>Strain-induced magnetic anisotropy of multi-domain epitaxial EuPd2 thin films</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Schuck, Alfons G ; Kölsch, Sebastian ; Valadkhani, Adrian ; Mazin, Igor I ; Valentí, Roser ; Huth, Michael</creator><creatorcontrib>Schuck, Alfons G ; Kölsch, Sebastian ; Valadkhani, Adrian ; Mazin, Igor I ; Valentí, Roser ; Huth, Michael</creatorcontrib><description>Europium intermetallic compounds show a variety of different ground states and anomalous physical properties due to the interactions between the localized 4f electrons and the delocalized electronic states. Europium is also the most reactive of the rare earth metals which might be the reason why very few works are concerned with the properties of Eu-based thin films. Here we address the low-temperature magnetic properties of ferromagnetic EuPd2 thin films prepared by molecular beam epitaxy. The epitaxial (111)-oriented thin films grow on MgO (100) with eight different domain orientations. We analyze the low-temperature magnetic hysteresis behavior by means of micromagnetic simulations taking the multi-domain morphology explicitly into account and quantify the magnetic crystal anisotropy contribution. By ab initio calculations we trace back the microscopic origin of the magnetic anisotropy to thin film-induced uniform biaxial strain.</description><identifier>EISSN: 2515-7639</identifier><identifier>DOI: 10.1088/2515-7639/ad2d5e</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>density functional theory (DFT) ; Electron states ; Epitaxial growth ; Europium ; Europium compounds ; Europium–Palladium ; ferromagnet ; Ferromagnetic materials ; Hysteresis ; Induced magnetic anisotropy ; Intermetallic compounds ; intermetallic thin film ; Low temperature ; Magnetic properties ; micromagnetic simulation ; Molecular beam epitaxy ; Physical properties ; rare Earth ; Rare earth elements ; strain ; Thin films</subject><ispartof>JPhys materials, 2024-04, Vol.7 (2), p.025008</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3596-964X ; 0000-0003-0497-1165 ; 0000-0001-5199-2415 ; 0000-0001-7415-465X ; 0000-0001-9456-7099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2515-7639/ad2d5e/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Schuck, Alfons G</creatorcontrib><creatorcontrib>Kölsch, Sebastian</creatorcontrib><creatorcontrib>Valadkhani, Adrian</creatorcontrib><creatorcontrib>Mazin, Igor I</creatorcontrib><creatorcontrib>Valentí, Roser</creatorcontrib><creatorcontrib>Huth, Michael</creatorcontrib><title>Strain-induced magnetic anisotropy of multi-domain epitaxial EuPd2 thin films</title><title>JPhys materials</title><addtitle>JPhysMaterials</addtitle><addtitle>J. Phys. Mater</addtitle><description>Europium intermetallic compounds show a variety of different ground states and anomalous physical properties due to the interactions between the localized 4f electrons and the delocalized electronic states. Europium is also the most reactive of the rare earth metals which might be the reason why very few works are concerned with the properties of Eu-based thin films. Here we address the low-temperature magnetic properties of ferromagnetic EuPd2 thin films prepared by molecular beam epitaxy. The epitaxial (111)-oriented thin films grow on MgO (100) with eight different domain orientations. We analyze the low-temperature magnetic hysteresis behavior by means of micromagnetic simulations taking the multi-domain morphology explicitly into account and quantify the magnetic crystal anisotropy contribution. By ab initio calculations we trace back the microscopic origin of the magnetic anisotropy to thin film-induced uniform biaxial strain.</description><subject>density functional theory (DFT)</subject><subject>Electron states</subject><subject>Epitaxial growth</subject><subject>Europium</subject><subject>Europium compounds</subject><subject>Europium–Palladium</subject><subject>ferromagnet</subject><subject>Ferromagnetic materials</subject><subject>Hysteresis</subject><subject>Induced magnetic anisotropy</subject><subject>Intermetallic compounds</subject><subject>intermetallic thin film</subject><subject>Low temperature</subject><subject>Magnetic properties</subject><subject>micromagnetic simulation</subject><subject>Molecular beam epitaxy</subject><subject>Physical properties</subject><subject>rare Earth</subject><subject>Rare earth elements</subject><subject>strain</subject><subject>Thin films</subject><issn>2515-7639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNptkEtLxDAUhYsgOKh7lwV3Yp282rRLGXwMjCio63Dbm2iGtqlpCs6_N2NFN64uHD4O535JckbJFSVluWQ5zTNZ8GoJyDDXB8niNzpKTsdxSwhhshJEyEXy8Bw82D6zPU6NxrSDt14H26TQ29EF74Zd6kzaTW2wGbousqkebIBPC216Mz0hS8N7DI1tu_EkOTTQjvr05x4nr7c3L6v7bPN4t15dbzLkBQ8ZlXmlhTSGiLiQUtrUyKQoZEk4yWXdQNUAknhMWdUSKFItKQcUtREGan6crOdedLBVg7cd-J1yYNV34PybAh-_aLXiBrGShJUEcgE5gqaABqEqRA0NbWLX-dw1ePcx6TGorZt8H-crVgkmBOOFjNTlTFk3_AGUqL1ztRes9oLV7DziF__g26GDoL2SiinCckJKNaDhX_2Dhh4</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Schuck, Alfons G</creator><creator>Kölsch, Sebastian</creator><creator>Valadkhani, Adrian</creator><creator>Mazin, Igor I</creator><creator>Valentí, Roser</creator><creator>Huth, Michael</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3596-964X</orcidid><orcidid>https://orcid.org/0000-0003-0497-1165</orcidid><orcidid>https://orcid.org/0000-0001-5199-2415</orcidid><orcidid>https://orcid.org/0000-0001-7415-465X</orcidid><orcidid>https://orcid.org/0000-0001-9456-7099</orcidid></search><sort><creationdate>20240401</creationdate><title>Strain-induced magnetic anisotropy of multi-domain epitaxial EuPd2 thin films</title><author>Schuck, Alfons G ; Kölsch, Sebastian ; Valadkhani, Adrian ; Mazin, Igor I ; Valentí, Roser ; Huth, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d363t-1759e47ff042d5111cbd27467803057bca9cad0ca9f89b7a1d1e713ad4bf4fab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>density functional theory (DFT)</topic><topic>Electron states</topic><topic>Epitaxial growth</topic><topic>Europium</topic><topic>Europium compounds</topic><topic>Europium–Palladium</topic><topic>ferromagnet</topic><topic>Ferromagnetic materials</topic><topic>Hysteresis</topic><topic>Induced magnetic anisotropy</topic><topic>Intermetallic compounds</topic><topic>intermetallic thin film</topic><topic>Low temperature</topic><topic>Magnetic properties</topic><topic>micromagnetic simulation</topic><topic>Molecular beam epitaxy</topic><topic>Physical properties</topic><topic>rare Earth</topic><topic>Rare earth elements</topic><topic>strain</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schuck, Alfons G</creatorcontrib><creatorcontrib>Kölsch, Sebastian</creatorcontrib><creatorcontrib>Valadkhani, Adrian</creatorcontrib><creatorcontrib>Mazin, Igor I</creatorcontrib><creatorcontrib>Valentí, Roser</creatorcontrib><creatorcontrib>Huth, Michael</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>JPhys materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schuck, Alfons G</au><au>Kölsch, Sebastian</au><au>Valadkhani, Adrian</au><au>Mazin, Igor I</au><au>Valentí, Roser</au><au>Huth, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain-induced magnetic anisotropy of multi-domain epitaxial EuPd2 thin films</atitle><jtitle>JPhys materials</jtitle><stitle>JPhysMaterials</stitle><addtitle>J. Phys. Mater</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>7</volume><issue>2</issue><spage>025008</spage><pages>025008-</pages><eissn>2515-7639</eissn><abstract>Europium intermetallic compounds show a variety of different ground states and anomalous physical properties due to the interactions between the localized 4f electrons and the delocalized electronic states. Europium is also the most reactive of the rare earth metals which might be the reason why very few works are concerned with the properties of Eu-based thin films. Here we address the low-temperature magnetic properties of ferromagnetic EuPd2 thin films prepared by molecular beam epitaxy. The epitaxial (111)-oriented thin films grow on MgO (100) with eight different domain orientations. We analyze the low-temperature magnetic hysteresis behavior by means of micromagnetic simulations taking the multi-domain morphology explicitly into account and quantify the magnetic crystal anisotropy contribution. By ab initio calculations we trace back the microscopic origin of the magnetic anisotropy to thin film-induced uniform biaxial strain.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2515-7639/ad2d5e</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3596-964X</orcidid><orcidid>https://orcid.org/0000-0003-0497-1165</orcidid><orcidid>https://orcid.org/0000-0001-5199-2415</orcidid><orcidid>https://orcid.org/0000-0001-7415-465X</orcidid><orcidid>https://orcid.org/0000-0001-9456-7099</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2515-7639 |
ispartof | JPhys materials, 2024-04, Vol.7 (2), p.025008 |
issn | 2515-7639 |
language | eng |
recordid | cdi_proquest_journals_2942442367 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | density functional theory (DFT) Electron states Epitaxial growth Europium Europium compounds Europium–Palladium ferromagnet Ferromagnetic materials Hysteresis Induced magnetic anisotropy Intermetallic compounds intermetallic thin film Low temperature Magnetic properties micromagnetic simulation Molecular beam epitaxy Physical properties rare Earth Rare earth elements strain Thin films |
title | Strain-induced magnetic anisotropy of multi-domain epitaxial EuPd2 thin films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain-induced%20magnetic%20anisotropy%20of%20multi-domain%20epitaxial%20EuPd2%20thin%20films&rft.jtitle=JPhys%20materials&rft.au=Schuck,%20Alfons%20G&rft.date=2024-04-01&rft.volume=7&rft.issue=2&rft.spage=025008&rft.pages=025008-&rft.eissn=2515-7639&rft_id=info:doi/10.1088/2515-7639/ad2d5e&rft_dat=%3Cproquest_iop_j%3E2942442367%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2942442367&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_3fdd970280a54a5dae1adfda964bac1c&rfr_iscdi=true |