A visually secure image encryption algorithm based on block compressive sensing and deep neural networks

A novel visually secure image encryption algorithm is proposed by combining compressive sensing and deep neural networks. To achieve a tradeoff between the visual quality and the reconstruction quality in different scenarios, a multi-channel sampling network structure is constructed to provide diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2024-03, Vol.83 (10), p.29777-29803
Hauptverfasser: Yang, Yu-Guang, Niu, Ming-Xin, Zhou, Yi-Hua, Shi, Wei-Min, Jiang, Dong-Hua, Liao, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29803
container_issue 10
container_start_page 29777
container_title Multimedia tools and applications
container_volume 83
creator Yang, Yu-Guang
Niu, Ming-Xin
Zhou, Yi-Hua
Shi, Wei-Min
Jiang, Dong-Hua
Liao, Xin
description A novel visually secure image encryption algorithm is proposed by combining compressive sensing and deep neural networks. To achieve a tradeoff between the visual quality and the reconstruction quality in different scenarios, a multi-channel sampling network structure is constructed to provide different compression performances. Then, the pre-encrypted compressed image is embedded into the host image by the IWT embedding strategy in the sampling network. During the matrix reconstruction process, a deep reconstruction network is employed for full image denoising, significantly reducing the impact of block artifacts and resulting in reconstructed images with higher visual quality. Simulation results indicate that the present algorithm can reconstruct images efficiently with high quality at very low sampling rates, while greatly preserving the advantages of speed and learning ability of deep neural networks.
doi_str_mv 10.1007/s11042-023-16702-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2941425841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2941425841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-460cad678d9bc46200d4fc9ae94d5850428493d93d845c35cfcfb983270a127e3</originalsourceid><addsrcrecordid>eNp9UMtqwzAQFKWFpo8f6EnQs1u9bNnHEPqCQC_tWcjS2nHiSK5kp-TvqzSF9lRYmGWZmWUGoRtK7igh8j5SSgTLCOMZLSRhGT1BM5pLnknJ6Omf_RxdxLgmhBY5EzO0muNdFyfd93scwUwBcLfVLWBwJuyHsfMO6771oRtXW1zrCBanU917s8HGb4cAMXY7SGIXO9di7Sy2AAN2MAXdJxg_fdjEK3TW6D7C9Q9eovfHh7fFc7Z8fXpZzJeZ4bQaM1EQo20hS1vVRhSMECsaU2mohM3LPIUsRcVtmlLkhuemMU1dlZxJoimTwC_R7dF3CP5jgjiqtZ-CSy8VqwQVLC8FTSx2ZJngYwzQqCGk3GGvKFGHRtWxUZUaVd-NqoOIH0UxkV0L4df6H9UXk3V6BQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2941425841</pqid></control><display><type>article</type><title>A visually secure image encryption algorithm based on block compressive sensing and deep neural networks</title><source>SpringerLink Journals</source><creator>Yang, Yu-Guang ; Niu, Ming-Xin ; Zhou, Yi-Hua ; Shi, Wei-Min ; Jiang, Dong-Hua ; Liao, Xin</creator><creatorcontrib>Yang, Yu-Guang ; Niu, Ming-Xin ; Zhou, Yi-Hua ; Shi, Wei-Min ; Jiang, Dong-Hua ; Liao, Xin</creatorcontrib><description>A novel visually secure image encryption algorithm is proposed by combining compressive sensing and deep neural networks. To achieve a tradeoff between the visual quality and the reconstruction quality in different scenarios, a multi-channel sampling network structure is constructed to provide different compression performances. Then, the pre-encrypted compressed image is embedded into the host image by the IWT embedding strategy in the sampling network. During the matrix reconstruction process, a deep reconstruction network is employed for full image denoising, significantly reducing the impact of block artifacts and resulting in reconstructed images with higher visual quality. Simulation results indicate that the present algorithm can reconstruct images efficiently with high quality at very low sampling rates, while greatly preserving the advantages of speed and learning ability of deep neural networks.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-16702-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial neural networks ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deep learning ; Efficiency ; Embedding ; Encryption ; Image compression ; Image quality ; Image reconstruction ; Machine learning ; Multimedia ; Multimedia Information Systems ; Neural networks ; Sampling ; Simulation ; Special Purpose and Application-Based Systems ; Wavelet transforms</subject><ispartof>Multimedia tools and applications, 2024-03, Vol.83 (10), p.29777-29803</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-460cad678d9bc46200d4fc9ae94d5850428493d93d845c35cfcfb983270a127e3</citedby><cites>FETCH-LOGICAL-c319t-460cad678d9bc46200d4fc9ae94d5850428493d93d845c35cfcfb983270a127e3</cites><orcidid>0000-0002-4040-2448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-16702-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-16702-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Yang, Yu-Guang</creatorcontrib><creatorcontrib>Niu, Ming-Xin</creatorcontrib><creatorcontrib>Zhou, Yi-Hua</creatorcontrib><creatorcontrib>Shi, Wei-Min</creatorcontrib><creatorcontrib>Jiang, Dong-Hua</creatorcontrib><creatorcontrib>Liao, Xin</creatorcontrib><title>A visually secure image encryption algorithm based on block compressive sensing and deep neural networks</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>A novel visually secure image encryption algorithm is proposed by combining compressive sensing and deep neural networks. To achieve a tradeoff between the visual quality and the reconstruction quality in different scenarios, a multi-channel sampling network structure is constructed to provide different compression performances. Then, the pre-encrypted compressed image is embedded into the host image by the IWT embedding strategy in the sampling network. During the matrix reconstruction process, a deep reconstruction network is employed for full image denoising, significantly reducing the impact of block artifacts and resulting in reconstructed images with higher visual quality. Simulation results indicate that the present algorithm can reconstruct images efficiently with high quality at very low sampling rates, while greatly preserving the advantages of speed and learning ability of deep neural networks.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Efficiency</subject><subject>Embedding</subject><subject>Encryption</subject><subject>Image compression</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Machine learning</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Sampling</subject><subject>Simulation</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Wavelet transforms</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqwzAQFKWFpo8f6EnQs1u9bNnHEPqCQC_tWcjS2nHiSK5kp-TvqzSF9lRYmGWZmWUGoRtK7igh8j5SSgTLCOMZLSRhGT1BM5pLnknJ6Omf_RxdxLgmhBY5EzO0muNdFyfd93scwUwBcLfVLWBwJuyHsfMO6771oRtXW1zrCBanU917s8HGb4cAMXY7SGIXO9di7Sy2AAN2MAXdJxg_fdjEK3TW6D7C9Q9eovfHh7fFc7Z8fXpZzJeZ4bQaM1EQo20hS1vVRhSMECsaU2mohM3LPIUsRcVtmlLkhuemMU1dlZxJoimTwC_R7dF3CP5jgjiqtZ-CSy8VqwQVLC8FTSx2ZJngYwzQqCGk3GGvKFGHRtWxUZUaVd-NqoOIH0UxkV0L4df6H9UXk3V6BQ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Yang, Yu-Guang</creator><creator>Niu, Ming-Xin</creator><creator>Zhou, Yi-Hua</creator><creator>Shi, Wei-Min</creator><creator>Jiang, Dong-Hua</creator><creator>Liao, Xin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4040-2448</orcidid></search><sort><creationdate>20240301</creationdate><title>A visually secure image encryption algorithm based on block compressive sensing and deep neural networks</title><author>Yang, Yu-Guang ; Niu, Ming-Xin ; Zhou, Yi-Hua ; Shi, Wei-Min ; Jiang, Dong-Hua ; Liao, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-460cad678d9bc46200d4fc9ae94d5850428493d93d845c35cfcfb983270a127e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Efficiency</topic><topic>Embedding</topic><topic>Encryption</topic><topic>Image compression</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Machine learning</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Sampling</topic><topic>Simulation</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yu-Guang</creatorcontrib><creatorcontrib>Niu, Ming-Xin</creatorcontrib><creatorcontrib>Zhou, Yi-Hua</creatorcontrib><creatorcontrib>Shi, Wei-Min</creatorcontrib><creatorcontrib>Jiang, Dong-Hua</creatorcontrib><creatorcontrib>Liao, Xin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yu-Guang</au><au>Niu, Ming-Xin</au><au>Zhou, Yi-Hua</au><au>Shi, Wei-Min</au><au>Jiang, Dong-Hua</au><au>Liao, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A visually secure image encryption algorithm based on block compressive sensing and deep neural networks</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>83</volume><issue>10</issue><spage>29777</spage><epage>29803</epage><pages>29777-29803</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>A novel visually secure image encryption algorithm is proposed by combining compressive sensing and deep neural networks. To achieve a tradeoff between the visual quality and the reconstruction quality in different scenarios, a multi-channel sampling network structure is constructed to provide different compression performances. Then, the pre-encrypted compressed image is embedded into the host image by the IWT embedding strategy in the sampling network. During the matrix reconstruction process, a deep reconstruction network is employed for full image denoising, significantly reducing the impact of block artifacts and resulting in reconstructed images with higher visual quality. Simulation results indicate that the present algorithm can reconstruct images efficiently with high quality at very low sampling rates, while greatly preserving the advantages of speed and learning ability of deep neural networks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-16702-1</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-4040-2448</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1573-7721
ispartof Multimedia tools and applications, 2024-03, Vol.83 (10), p.29777-29803
issn 1573-7721
1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2941425841
source SpringerLink Journals
subjects Algorithms
Artificial neural networks
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Efficiency
Embedding
Encryption
Image compression
Image quality
Image reconstruction
Machine learning
Multimedia
Multimedia Information Systems
Neural networks
Sampling
Simulation
Special Purpose and Application-Based Systems
Wavelet transforms
title A visually secure image encryption algorithm based on block compressive sensing and deep neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20visually%20secure%20image%20encryption%20algorithm%20based%20on%20block%20compressive%20sensing%20and%20deep%20neural%20networks&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Yang,%20Yu-Guang&rft.date=2024-03-01&rft.volume=83&rft.issue=10&rft.spage=29777&rft.epage=29803&rft.pages=29777-29803&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-16702-1&rft_dat=%3Cproquest_cross%3E2941425841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2941425841&rft_id=info:pmid/&rfr_iscdi=true