A visually secure image encryption algorithm based on block compressive sensing and deep neural networks
A novel visually secure image encryption algorithm is proposed by combining compressive sensing and deep neural networks. To achieve a tradeoff between the visual quality and the reconstruction quality in different scenarios, a multi-channel sampling network structure is constructed to provide diffe...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2024-03, Vol.83 (10), p.29777-29803 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29803 |
---|---|
container_issue | 10 |
container_start_page | 29777 |
container_title | Multimedia tools and applications |
container_volume | 83 |
creator | Yang, Yu-Guang Niu, Ming-Xin Zhou, Yi-Hua Shi, Wei-Min Jiang, Dong-Hua Liao, Xin |
description | A novel visually secure image encryption algorithm is proposed by combining compressive sensing and deep neural networks. To achieve a tradeoff between the visual quality and the reconstruction quality in different scenarios, a multi-channel sampling network structure is constructed to provide different compression performances. Then, the pre-encrypted compressed image is embedded into the host image by the IWT embedding strategy in the sampling network. During the matrix reconstruction process, a deep reconstruction network is employed for full image denoising, significantly reducing the impact of block artifacts and resulting in reconstructed images with higher visual quality. Simulation results indicate that the present algorithm can reconstruct images efficiently with high quality at very low sampling rates, while greatly preserving the advantages of speed and learning ability of deep neural networks. |
doi_str_mv | 10.1007/s11042-023-16702-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2941425841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2941425841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-460cad678d9bc46200d4fc9ae94d5850428493d93d845c35cfcfb983270a127e3</originalsourceid><addsrcrecordid>eNp9UMtqwzAQFKWFpo8f6EnQs1u9bNnHEPqCQC_tWcjS2nHiSK5kp-TvqzSF9lRYmGWZmWUGoRtK7igh8j5SSgTLCOMZLSRhGT1BM5pLnknJ6Omf_RxdxLgmhBY5EzO0muNdFyfd93scwUwBcLfVLWBwJuyHsfMO6771oRtXW1zrCBanU917s8HGb4cAMXY7SGIXO9di7Sy2AAN2MAXdJxg_fdjEK3TW6D7C9Q9eovfHh7fFc7Z8fXpZzJeZ4bQaM1EQo20hS1vVRhSMECsaU2mohM3LPIUsRcVtmlLkhuemMU1dlZxJoimTwC_R7dF3CP5jgjiqtZ-CSy8VqwQVLC8FTSx2ZJngYwzQqCGk3GGvKFGHRtWxUZUaVd-NqoOIH0UxkV0L4df6H9UXk3V6BQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2941425841</pqid></control><display><type>article</type><title>A visually secure image encryption algorithm based on block compressive sensing and deep neural networks</title><source>SpringerLink Journals</source><creator>Yang, Yu-Guang ; Niu, Ming-Xin ; Zhou, Yi-Hua ; Shi, Wei-Min ; Jiang, Dong-Hua ; Liao, Xin</creator><creatorcontrib>Yang, Yu-Guang ; Niu, Ming-Xin ; Zhou, Yi-Hua ; Shi, Wei-Min ; Jiang, Dong-Hua ; Liao, Xin</creatorcontrib><description>A novel visually secure image encryption algorithm is proposed by combining compressive sensing and deep neural networks. To achieve a tradeoff between the visual quality and the reconstruction quality in different scenarios, a multi-channel sampling network structure is constructed to provide different compression performances. Then, the pre-encrypted compressed image is embedded into the host image by the IWT embedding strategy in the sampling network. During the matrix reconstruction process, a deep reconstruction network is employed for full image denoising, significantly reducing the impact of block artifacts and resulting in reconstructed images with higher visual quality. Simulation results indicate that the present algorithm can reconstruct images efficiently with high quality at very low sampling rates, while greatly preserving the advantages of speed and learning ability of deep neural networks.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-16702-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial neural networks ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deep learning ; Efficiency ; Embedding ; Encryption ; Image compression ; Image quality ; Image reconstruction ; Machine learning ; Multimedia ; Multimedia Information Systems ; Neural networks ; Sampling ; Simulation ; Special Purpose and Application-Based Systems ; Wavelet transforms</subject><ispartof>Multimedia tools and applications, 2024-03, Vol.83 (10), p.29777-29803</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-460cad678d9bc46200d4fc9ae94d5850428493d93d845c35cfcfb983270a127e3</citedby><cites>FETCH-LOGICAL-c319t-460cad678d9bc46200d4fc9ae94d5850428493d93d845c35cfcfb983270a127e3</cites><orcidid>0000-0002-4040-2448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-16702-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-16702-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Yang, Yu-Guang</creatorcontrib><creatorcontrib>Niu, Ming-Xin</creatorcontrib><creatorcontrib>Zhou, Yi-Hua</creatorcontrib><creatorcontrib>Shi, Wei-Min</creatorcontrib><creatorcontrib>Jiang, Dong-Hua</creatorcontrib><creatorcontrib>Liao, Xin</creatorcontrib><title>A visually secure image encryption algorithm based on block compressive sensing and deep neural networks</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>A novel visually secure image encryption algorithm is proposed by combining compressive sensing and deep neural networks. To achieve a tradeoff between the visual quality and the reconstruction quality in different scenarios, a multi-channel sampling network structure is constructed to provide different compression performances. Then, the pre-encrypted compressed image is embedded into the host image by the IWT embedding strategy in the sampling network. During the matrix reconstruction process, a deep reconstruction network is employed for full image denoising, significantly reducing the impact of block artifacts and resulting in reconstructed images with higher visual quality. Simulation results indicate that the present algorithm can reconstruct images efficiently with high quality at very low sampling rates, while greatly preserving the advantages of speed and learning ability of deep neural networks.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Efficiency</subject><subject>Embedding</subject><subject>Encryption</subject><subject>Image compression</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Machine learning</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Sampling</subject><subject>Simulation</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Wavelet transforms</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqwzAQFKWFpo8f6EnQs1u9bNnHEPqCQC_tWcjS2nHiSK5kp-TvqzSF9lRYmGWZmWUGoRtK7igh8j5SSgTLCOMZLSRhGT1BM5pLnknJ6Omf_RxdxLgmhBY5EzO0muNdFyfd93scwUwBcLfVLWBwJuyHsfMO6771oRtXW1zrCBanU917s8HGb4cAMXY7SGIXO9di7Sy2AAN2MAXdJxg_fdjEK3TW6D7C9Q9eovfHh7fFc7Z8fXpZzJeZ4bQaM1EQo20hS1vVRhSMECsaU2mohM3LPIUsRcVtmlLkhuemMU1dlZxJoimTwC_R7dF3CP5jgjiqtZ-CSy8VqwQVLC8FTSx2ZJngYwzQqCGk3GGvKFGHRtWxUZUaVd-NqoOIH0UxkV0L4df6H9UXk3V6BQ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Yang, Yu-Guang</creator><creator>Niu, Ming-Xin</creator><creator>Zhou, Yi-Hua</creator><creator>Shi, Wei-Min</creator><creator>Jiang, Dong-Hua</creator><creator>Liao, Xin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4040-2448</orcidid></search><sort><creationdate>20240301</creationdate><title>A visually secure image encryption algorithm based on block compressive sensing and deep neural networks</title><author>Yang, Yu-Guang ; Niu, Ming-Xin ; Zhou, Yi-Hua ; Shi, Wei-Min ; Jiang, Dong-Hua ; Liao, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-460cad678d9bc46200d4fc9ae94d5850428493d93d845c35cfcfb983270a127e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Efficiency</topic><topic>Embedding</topic><topic>Encryption</topic><topic>Image compression</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Machine learning</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Sampling</topic><topic>Simulation</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yu-Guang</creatorcontrib><creatorcontrib>Niu, Ming-Xin</creatorcontrib><creatorcontrib>Zhou, Yi-Hua</creatorcontrib><creatorcontrib>Shi, Wei-Min</creatorcontrib><creatorcontrib>Jiang, Dong-Hua</creatorcontrib><creatorcontrib>Liao, Xin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yu-Guang</au><au>Niu, Ming-Xin</au><au>Zhou, Yi-Hua</au><au>Shi, Wei-Min</au><au>Jiang, Dong-Hua</au><au>Liao, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A visually secure image encryption algorithm based on block compressive sensing and deep neural networks</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>83</volume><issue>10</issue><spage>29777</spage><epage>29803</epage><pages>29777-29803</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>A novel visually secure image encryption algorithm is proposed by combining compressive sensing and deep neural networks. To achieve a tradeoff between the visual quality and the reconstruction quality in different scenarios, a multi-channel sampling network structure is constructed to provide different compression performances. Then, the pre-encrypted compressed image is embedded into the host image by the IWT embedding strategy in the sampling network. During the matrix reconstruction process, a deep reconstruction network is employed for full image denoising, significantly reducing the impact of block artifacts and resulting in reconstructed images with higher visual quality. Simulation results indicate that the present algorithm can reconstruct images efficiently with high quality at very low sampling rates, while greatly preserving the advantages of speed and learning ability of deep neural networks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-16702-1</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-4040-2448</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-7721 |
ispartof | Multimedia tools and applications, 2024-03, Vol.83 (10), p.29777-29803 |
issn | 1573-7721 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2941425841 |
source | SpringerLink Journals |
subjects | Algorithms Artificial neural networks Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Efficiency Embedding Encryption Image compression Image quality Image reconstruction Machine learning Multimedia Multimedia Information Systems Neural networks Sampling Simulation Special Purpose and Application-Based Systems Wavelet transforms |
title | A visually secure image encryption algorithm based on block compressive sensing and deep neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20visually%20secure%20image%20encryption%20algorithm%20based%20on%20block%20compressive%20sensing%20and%20deep%20neural%20networks&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Yang,%20Yu-Guang&rft.date=2024-03-01&rft.volume=83&rft.issue=10&rft.spage=29777&rft.epage=29803&rft.pages=29777-29803&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-16702-1&rft_dat=%3Cproquest_cross%3E2941425841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2941425841&rft_id=info:pmid/&rfr_iscdi=true |