From Noise to Signal: Unveiling Treatment Effects from Digital Health Data through Pharmacology-Informed Neural-SDE
Digital health technologies (DHT), such as wearable devices, provide personalized, continuous, and real-time monitoring of patient. These technologies are contributing to the development of novel therapies and personalized medicine. Gaining insight from these technologies requires appropriate modeli...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pakravan, Samira Evangelou, Nikolaos Usdin, Maxime Brooks, Logan Lu, James |
description | Digital health technologies (DHT), such as wearable devices, provide personalized, continuous, and real-time monitoring of patient. These technologies are contributing to the development of novel therapies and personalized medicine. Gaining insight from these technologies requires appropriate modeling techniques to capture clinically-relevant changes in disease state. The data generated from these devices is characterized by being stochastic in nature, may have missing elements, and exhibits considerable inter-individual variability - thereby making it difficult to analyze using traditional longitudinal modeling techniques. We present a novel pharmacology-informed neural stochastic differential equation (SDE) model capable of addressing these challenges. Using synthetic data, we demonstrate that our approach is effective in identifying treatment effects and learning causal relationships from stochastic data, thereby enabling counterfactual simulation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2941144342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2941144342</sourcerecordid><originalsourceid>FETCH-proquest_journals_29411443423</originalsourceid><addsrcrecordid>eNqNjk1rAjEQQENBqFT_w4Dnhd0k9sNrd8VepKCeZbCTbCSb0WS20H_fCv6Ant7lPXgPaqqNaapXq_WjmpdyrutaP7_o5dJMVVlnHmDLoRAIwy74hHEFh_RNIYbkYZ8JZaAk0DlHJyngbkUbfBCMsCGM0kOLgiB95tH38NljHvDEkf1P9ZEc54G-YEtjxljt2m6mJg5jofmdT2qx7vbvm-qS-TpSkeOZx_z3UY76zTaNtcZq8z_rF00USwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2941144342</pqid></control><display><type>article</type><title>From Noise to Signal: Unveiling Treatment Effects from Digital Health Data through Pharmacology-Informed Neural-SDE</title><source>Free E- Journals</source><creator>Pakravan, Samira ; Evangelou, Nikolaos ; Usdin, Maxime ; Brooks, Logan ; Lu, James</creator><creatorcontrib>Pakravan, Samira ; Evangelou, Nikolaos ; Usdin, Maxime ; Brooks, Logan ; Lu, James</creatorcontrib><description>Digital health technologies (DHT), such as wearable devices, provide personalized, continuous, and real-time monitoring of patient. These technologies are contributing to the development of novel therapies and personalized medicine. Gaining insight from these technologies requires appropriate modeling techniques to capture clinically-relevant changes in disease state. The data generated from these devices is characterized by being stochastic in nature, may have missing elements, and exhibits considerable inter-individual variability - thereby making it difficult to analyze using traditional longitudinal modeling techniques. We present a novel pharmacology-informed neural stochastic differential equation (SDE) model capable of addressing these challenges. Using synthetic data, we demonstrate that our approach is effective in identifying treatment effects and learning causal relationships from stochastic data, thereby enabling counterfactual simulation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Customization ; Differential equations ; Modelling ; Pharmacology ; Synthetic data ; Wearable technology</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Pakravan, Samira</creatorcontrib><creatorcontrib>Evangelou, Nikolaos</creatorcontrib><creatorcontrib>Usdin, Maxime</creatorcontrib><creatorcontrib>Brooks, Logan</creatorcontrib><creatorcontrib>Lu, James</creatorcontrib><title>From Noise to Signal: Unveiling Treatment Effects from Digital Health Data through Pharmacology-Informed Neural-SDE</title><title>arXiv.org</title><description>Digital health technologies (DHT), such as wearable devices, provide personalized, continuous, and real-time monitoring of patient. These technologies are contributing to the development of novel therapies and personalized medicine. Gaining insight from these technologies requires appropriate modeling techniques to capture clinically-relevant changes in disease state. The data generated from these devices is characterized by being stochastic in nature, may have missing elements, and exhibits considerable inter-individual variability - thereby making it difficult to analyze using traditional longitudinal modeling techniques. We present a novel pharmacology-informed neural stochastic differential equation (SDE) model capable of addressing these challenges. Using synthetic data, we demonstrate that our approach is effective in identifying treatment effects and learning causal relationships from stochastic data, thereby enabling counterfactual simulation.</description><subject>Customization</subject><subject>Differential equations</subject><subject>Modelling</subject><subject>Pharmacology</subject><subject>Synthetic data</subject><subject>Wearable technology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjk1rAjEQQENBqFT_w4Dnhd0k9sNrd8VepKCeZbCTbCSb0WS20H_fCv6Ant7lPXgPaqqNaapXq_WjmpdyrutaP7_o5dJMVVlnHmDLoRAIwy74hHEFh_RNIYbkYZ8JZaAk0DlHJyngbkUbfBCMsCGM0kOLgiB95tH38NljHvDEkf1P9ZEc54G-YEtjxljt2m6mJg5jofmdT2qx7vbvm-qS-TpSkeOZx_z3UY76zTaNtcZq8z_rF00USwg</recordid><startdate>20240305</startdate><enddate>20240305</enddate><creator>Pakravan, Samira</creator><creator>Evangelou, Nikolaos</creator><creator>Usdin, Maxime</creator><creator>Brooks, Logan</creator><creator>Lu, James</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240305</creationdate><title>From Noise to Signal: Unveiling Treatment Effects from Digital Health Data through Pharmacology-Informed Neural-SDE</title><author>Pakravan, Samira ; Evangelou, Nikolaos ; Usdin, Maxime ; Brooks, Logan ; Lu, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29411443423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Customization</topic><topic>Differential equations</topic><topic>Modelling</topic><topic>Pharmacology</topic><topic>Synthetic data</topic><topic>Wearable technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Pakravan, Samira</creatorcontrib><creatorcontrib>Evangelou, Nikolaos</creatorcontrib><creatorcontrib>Usdin, Maxime</creatorcontrib><creatorcontrib>Brooks, Logan</creatorcontrib><creatorcontrib>Lu, James</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pakravan, Samira</au><au>Evangelou, Nikolaos</au><au>Usdin, Maxime</au><au>Brooks, Logan</au><au>Lu, James</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>From Noise to Signal: Unveiling Treatment Effects from Digital Health Data through Pharmacology-Informed Neural-SDE</atitle><jtitle>arXiv.org</jtitle><date>2024-03-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Digital health technologies (DHT), such as wearable devices, provide personalized, continuous, and real-time monitoring of patient. These technologies are contributing to the development of novel therapies and personalized medicine. Gaining insight from these technologies requires appropriate modeling techniques to capture clinically-relevant changes in disease state. The data generated from these devices is characterized by being stochastic in nature, may have missing elements, and exhibits considerable inter-individual variability - thereby making it difficult to analyze using traditional longitudinal modeling techniques. We present a novel pharmacology-informed neural stochastic differential equation (SDE) model capable of addressing these challenges. Using synthetic data, we demonstrate that our approach is effective in identifying treatment effects and learning causal relationships from stochastic data, thereby enabling counterfactual simulation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2941144342 |
source | Free E- Journals |
subjects | Customization Differential equations Modelling Pharmacology Synthetic data Wearable technology |
title | From Noise to Signal: Unveiling Treatment Effects from Digital Health Data through Pharmacology-Informed Neural-SDE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=From%20Noise%20to%20Signal:%20Unveiling%20Treatment%20Effects%20from%20Digital%20Health%20Data%20through%20Pharmacology-Informed%20Neural-SDE&rft.jtitle=arXiv.org&rft.au=Pakravan,%20Samira&rft.date=2024-03-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2941144342%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2941144342&rft_id=info:pmid/&rfr_iscdi=true |