Enhancement on the surface quality in machining of aluminum alloy using graphene nanoparticles
Aluminum alloys are popularly used in the aerospace industry due to their lightweight and high strength-to-weight ratio. However, cutting these alloys can result in various machinability issues such as tool wear, built-up edges, and material adherence on the cutting tool. To address these issues and...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aluminum alloys are popularly used in the aerospace industry due to their lightweight and high strength-to-weight ratio. However, cutting these alloys can result in various machinability issues such as tool wear, built-up edges, and material adherence on the cutting tool. To address these issues and minimize the use of lubricants, researchers are exploring alternative greener techniques. One such technique is the use of nano lubrication technology. In this research, the consequence of three cutting techniques - dry cutting, minimum quantity lubrication (MQL), and MQL dispersed with graphene nanoparticles - was experimentally studied to assess their impact on hole quality, surface roughness, and the number of holes drilled. The findings showed that the addition of graphene nanoparticles improved roughness quality, reduced tool wear, and increased the number of holes drilled, but had less impact on hole accuracy. This study highlights the importance of nanoparticles in enhancing the machinability of aluminum alloys and offers promising avenues for future research in this area. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0180573 |