Doping effect of Europium (Eu3+) on flower-like ZnO nanostructures: shape variations, optical properties and its applicability in electrochemical sensing of heavy metal (Lead) ion detection
Hydrothermal synthesis has been effectively used to create pure and Europium (Eu 3+ ) doped (1, 3 & 5%) ZnO nanostructures. The as-synthesized structures were analyzed using a range of spectroscopic and microscopic techniques such as X-ray, UV–Vis, FTIR, PL, and SEM analysis. It was discovered t...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2024-04, Vol.130 (4), Article 217 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 130 |
creator | Tahir, Asma Want, Basharat |
description | Hydrothermal synthesis has been effectively used to create pure and Europium (Eu
3+
) doped (1, 3 & 5%) ZnO nanostructures. The as-synthesized structures were analyzed using a range of spectroscopic and microscopic techniques such as X-ray, UV–Vis, FTIR, PL, and SEM analysis. It was discovered that the shape of the fabricated flower-like ZnO nanostructures made of mixed compact clustered nanorods could be meticulously governed by changing the Eu
3+
dopant amount within the desired threshold. The distinctive photoluminescence (PL) properties indicate that energy is transferred from excited ZnO material, precisely at its band-gap (3.17 eV), to the Eu
3+
states through the luminescent defects present in the nanoparticles. Considering, the increasing presence of heavy metal ions poses a continuous risk to both human health and ecosystems, we introduced for the first time, an electrochemical spectroscopy analysis of Europium-doped ZnO (Eu
3+
: ZnO) as modifications to the glassy carbon electrodes for lead (Pb
2+
) heavy metal ion detection. Electrochemical impedance spectroscopy, cyclic voltammetry, and square wave voltammetry were used to test the sensor’s sensing ability. Differential pulse voltammetry reveals the remarkable sensitivity towards Pb
2+
ions with a 0.002 µM detection limit.
Graphical Abstract |
doi_str_mv | 10.1007/s00339-024-07358-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2938501561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2938501561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-dc6e9b994bed12d61d4c30850e9393a48a7ac59cbddd7f91b756a32ae5cd7cce3</originalsourceid><addsrcrecordid>eNp9kc9uGyEQxlHUSnXTvkBPI-WSKKGFZf-Y3qLESSpZyqW99IJYmI1J17AFNpUfLu8WHFfqrVwGDd_vm0EfIZ84-8wZ674kxoSQlFU1ZZ1olpQfkQWvRUVZK9gbsmCy7uhSyPYdeZ_SIyunrqoFeb4Ok_MPgMOAJkMYYDXH0pq3cLqaxfkZBA_DGP5gpKP7hfDT34PXPqQcZ5PniOkrpI2eEJ50dDq74NMFhCk7o0eYihfG7DCB9hZcLnWaxvLWu9HlHTgPOJbJMZgNbl-ZhD7tVyq7bFA_7WCLubRP16jtGRR_sJgLUm4fyNtBjwk__q3H5MfN6vvVHV3f3367ulxTI7jM1JoWZS9l3aPllW25rY1gy4ahFFLoeqk7bRppemttN0jed02rRaWxMbYzBsUxOTn4lv_8njFl9Rjm6MtIVUlRjHjT8qKqDioTQ0oRBzVFt9VxpzhT-5jUISZVYlKvMak9JA5QKmL_gPGf9X-oF9wPmeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938501561</pqid></control><display><type>article</type><title>Doping effect of Europium (Eu3+) on flower-like ZnO nanostructures: shape variations, optical properties and its applicability in electrochemical sensing of heavy metal (Lead) ion detection</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tahir, Asma ; Want, Basharat</creator><creatorcontrib>Tahir, Asma ; Want, Basharat</creatorcontrib><description>Hydrothermal synthesis has been effectively used to create pure and Europium (Eu
3+
) doped (1, 3 & 5%) ZnO nanostructures. The as-synthesized structures were analyzed using a range of spectroscopic and microscopic techniques such as X-ray, UV–Vis, FTIR, PL, and SEM analysis. It was discovered that the shape of the fabricated flower-like ZnO nanostructures made of mixed compact clustered nanorods could be meticulously governed by changing the Eu
3+
dopant amount within the desired threshold. The distinctive photoluminescence (PL) properties indicate that energy is transferred from excited ZnO material, precisely at its band-gap (3.17 eV), to the Eu
3+
states through the luminescent defects present in the nanoparticles. Considering, the increasing presence of heavy metal ions poses a continuous risk to both human health and ecosystems, we introduced for the first time, an electrochemical spectroscopy analysis of Europium-doped ZnO (Eu
3+
: ZnO) as modifications to the glassy carbon electrodes for lead (Pb
2+
) heavy metal ion detection. Electrochemical impedance spectroscopy, cyclic voltammetry, and square wave voltammetry were used to test the sensor’s sensing ability. Differential pulse voltammetry reveals the remarkable sensitivity towards Pb
2+
ions with a 0.002 µM detection limit.
Graphical Abstract</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-024-07358-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Chemical synthesis ; Condensed Matter Physics ; Electrochemical impedance spectroscopy ; Electrons ; Europium ; Glassy carbon ; Heavy metals ; Ion detectors ; Lead ; Machines ; Manufacturing ; Metal ions ; Nanorods ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Optical properties ; Photoluminescence ; Physics ; Physics and Astronomy ; Processes ; Spectrum analysis ; Square waves ; Surfaces and Interfaces ; Thin Films ; Voltammetry ; Zinc oxide</subject><ispartof>Applied physics. A, Materials science & processing, 2024-04, Vol.130 (4), Article 217</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-dc6e9b994bed12d61d4c30850e9393a48a7ac59cbddd7f91b756a32ae5cd7cce3</citedby><cites>FETCH-LOGICAL-c319t-dc6e9b994bed12d61d4c30850e9393a48a7ac59cbddd7f91b756a32ae5cd7cce3</cites><orcidid>0009-0005-6297-6740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-024-07358-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-024-07358-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Tahir, Asma</creatorcontrib><creatorcontrib>Want, Basharat</creatorcontrib><title>Doping effect of Europium (Eu3+) on flower-like ZnO nanostructures: shape variations, optical properties and its applicability in electrochemical sensing of heavy metal (Lead) ion detection</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Hydrothermal synthesis has been effectively used to create pure and Europium (Eu
3+
) doped (1, 3 & 5%) ZnO nanostructures. The as-synthesized structures were analyzed using a range of spectroscopic and microscopic techniques such as X-ray, UV–Vis, FTIR, PL, and SEM analysis. It was discovered that the shape of the fabricated flower-like ZnO nanostructures made of mixed compact clustered nanorods could be meticulously governed by changing the Eu
3+
dopant amount within the desired threshold. The distinctive photoluminescence (PL) properties indicate that energy is transferred from excited ZnO material, precisely at its band-gap (3.17 eV), to the Eu
3+
states through the luminescent defects present in the nanoparticles. Considering, the increasing presence of heavy metal ions poses a continuous risk to both human health and ecosystems, we introduced for the first time, an electrochemical spectroscopy analysis of Europium-doped ZnO (Eu
3+
: ZnO) as modifications to the glassy carbon electrodes for lead (Pb
2+
) heavy metal ion detection. Electrochemical impedance spectroscopy, cyclic voltammetry, and square wave voltammetry were used to test the sensor’s sensing ability. Differential pulse voltammetry reveals the remarkable sensitivity towards Pb
2+
ions with a 0.002 µM detection limit.
Graphical Abstract</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Condensed Matter Physics</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrons</subject><subject>Europium</subject><subject>Glassy carbon</subject><subject>Heavy metals</subject><subject>Ion detectors</subject><subject>Lead</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Metal ions</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Spectrum analysis</subject><subject>Square waves</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Voltammetry</subject><subject>Zinc oxide</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc9uGyEQxlHUSnXTvkBPI-WSKKGFZf-Y3qLESSpZyqW99IJYmI1J17AFNpUfLu8WHFfqrVwGDd_vm0EfIZ84-8wZ674kxoSQlFU1ZZ1olpQfkQWvRUVZK9gbsmCy7uhSyPYdeZ_SIyunrqoFeb4Ok_MPgMOAJkMYYDXH0pq3cLqaxfkZBA_DGP5gpKP7hfDT34PXPqQcZ5PniOkrpI2eEJ50dDq74NMFhCk7o0eYihfG7DCB9hZcLnWaxvLWu9HlHTgPOJbJMZgNbl-ZhD7tVyq7bFA_7WCLubRP16jtGRR_sJgLUm4fyNtBjwk__q3H5MfN6vvVHV3f3367ulxTI7jM1JoWZS9l3aPllW25rY1gy4ahFFLoeqk7bRppemttN0jed02rRaWxMbYzBsUxOTn4lv_8njFl9Rjm6MtIVUlRjHjT8qKqDioTQ0oRBzVFt9VxpzhT-5jUISZVYlKvMak9JA5QKmL_gPGf9X-oF9wPmeE</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Tahir, Asma</creator><creator>Want, Basharat</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-6297-6740</orcidid></search><sort><creationdate>20240401</creationdate><title>Doping effect of Europium (Eu3+) on flower-like ZnO nanostructures: shape variations, optical properties and its applicability in electrochemical sensing of heavy metal (Lead) ion detection</title><author>Tahir, Asma ; Want, Basharat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-dc6e9b994bed12d61d4c30850e9393a48a7ac59cbddd7f91b756a32ae5cd7cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Condensed Matter Physics</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrons</topic><topic>Europium</topic><topic>Glassy carbon</topic><topic>Heavy metals</topic><topic>Ion detectors</topic><topic>Lead</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Metal ions</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Spectrum analysis</topic><topic>Square waves</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Voltammetry</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tahir, Asma</creatorcontrib><creatorcontrib>Want, Basharat</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tahir, Asma</au><au>Want, Basharat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doping effect of Europium (Eu3+) on flower-like ZnO nanostructures: shape variations, optical properties and its applicability in electrochemical sensing of heavy metal (Lead) ion detection</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>130</volume><issue>4</issue><artnum>217</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Hydrothermal synthesis has been effectively used to create pure and Europium (Eu
3+
) doped (1, 3 & 5%) ZnO nanostructures. The as-synthesized structures were analyzed using a range of spectroscopic and microscopic techniques such as X-ray, UV–Vis, FTIR, PL, and SEM analysis. It was discovered that the shape of the fabricated flower-like ZnO nanostructures made of mixed compact clustered nanorods could be meticulously governed by changing the Eu
3+
dopant amount within the desired threshold. The distinctive photoluminescence (PL) properties indicate that energy is transferred from excited ZnO material, precisely at its band-gap (3.17 eV), to the Eu
3+
states through the luminescent defects present in the nanoparticles. Considering, the increasing presence of heavy metal ions poses a continuous risk to both human health and ecosystems, we introduced for the first time, an electrochemical spectroscopy analysis of Europium-doped ZnO (Eu
3+
: ZnO) as modifications to the glassy carbon electrodes for lead (Pb
2+
) heavy metal ion detection. Electrochemical impedance spectroscopy, cyclic voltammetry, and square wave voltammetry were used to test the sensor’s sensing ability. Differential pulse voltammetry reveals the remarkable sensitivity towards Pb
2+
ions with a 0.002 µM detection limit.
Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-024-07358-1</doi><orcidid>https://orcid.org/0009-0005-6297-6740</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2024-04, Vol.130 (4), Article 217 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2938501561 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemical synthesis Condensed Matter Physics Electrochemical impedance spectroscopy Electrons Europium Glassy carbon Heavy metals Ion detectors Lead Machines Manufacturing Metal ions Nanorods Nanostructure Nanotechnology Optical and Electronic Materials Optical properties Photoluminescence Physics Physics and Astronomy Processes Spectrum analysis Square waves Surfaces and Interfaces Thin Films Voltammetry Zinc oxide |
title | Doping effect of Europium (Eu3+) on flower-like ZnO nanostructures: shape variations, optical properties and its applicability in electrochemical sensing of heavy metal (Lead) ion detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doping%20effect%20of%20Europium%20(Eu3+)%20on%20flower-like%20ZnO%20nanostructures:%20shape%20variations,%20optical%20properties%20and%20its%20applicability%20in%20electrochemical%20sensing%20of%20heavy%20metal%20(Lead)%20ion%20detection&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Tahir,%20Asma&rft.date=2024-04-01&rft.volume=130&rft.issue=4&rft.artnum=217&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-024-07358-1&rft_dat=%3Cproquest_cross%3E2938501561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938501561&rft_id=info:pmid/&rfr_iscdi=true |