Doping effect of Europium (Eu3+) on flower-like ZnO nanostructures: shape variations, optical properties and its applicability in electrochemical sensing of heavy metal (Lead) ion detection

Hydrothermal synthesis has been effectively used to create pure and Europium (Eu 3+ ) doped (1, 3 & 5%) ZnO nanostructures. The as-synthesized structures were analyzed using a range of spectroscopic and microscopic techniques such as X-ray, UV–Vis, FTIR, PL, and SEM analysis. It was discovered t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2024-04, Vol.130 (4), Article 217
Hauptverfasser: Tahir, Asma, Want, Basharat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 130
creator Tahir, Asma
Want, Basharat
description Hydrothermal synthesis has been effectively used to create pure and Europium (Eu 3+ ) doped (1, 3 & 5%) ZnO nanostructures. The as-synthesized structures were analyzed using a range of spectroscopic and microscopic techniques such as X-ray, UV–Vis, FTIR, PL, and SEM analysis. It was discovered that the shape of the fabricated flower-like ZnO nanostructures made of mixed compact clustered nanorods could be meticulously governed by changing the Eu 3+ dopant amount within the desired threshold. The distinctive photoluminescence (PL) properties indicate that energy is transferred from excited ZnO material, precisely at its band-gap (3.17 eV), to the Eu 3+ states through the luminescent defects present in the nanoparticles. Considering, the increasing presence of heavy metal ions poses a continuous risk to both human health and ecosystems, we introduced for the first time, an electrochemical spectroscopy analysis of Europium-doped ZnO (Eu 3+ : ZnO) as modifications to the glassy carbon electrodes for lead (Pb 2+ ) heavy metal ion detection. Electrochemical impedance spectroscopy, cyclic voltammetry, and square wave voltammetry were used to test the sensor’s sensing ability. Differential pulse voltammetry reveals the remarkable sensitivity towards Pb 2+ ions with a 0.002 µM detection limit. Graphical Abstract
doi_str_mv 10.1007/s00339-024-07358-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2938501561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2938501561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-dc6e9b994bed12d61d4c30850e9393a48a7ac59cbddd7f91b756a32ae5cd7cce3</originalsourceid><addsrcrecordid>eNp9kc9uGyEQxlHUSnXTvkBPI-WSKKGFZf-Y3qLESSpZyqW99IJYmI1J17AFNpUfLu8WHFfqrVwGDd_vm0EfIZ84-8wZ674kxoSQlFU1ZZ1olpQfkQWvRUVZK9gbsmCy7uhSyPYdeZ_SIyunrqoFeb4Ok_MPgMOAJkMYYDXH0pq3cLqaxfkZBA_DGP5gpKP7hfDT34PXPqQcZ5PniOkrpI2eEJ50dDq74NMFhCk7o0eYihfG7DCB9hZcLnWaxvLWu9HlHTgPOJbJMZgNbl-ZhD7tVyq7bFA_7WCLubRP16jtGRR_sJgLUm4fyNtBjwk__q3H5MfN6vvVHV3f3367ulxTI7jM1JoWZS9l3aPllW25rY1gy4ahFFLoeqk7bRppemttN0jed02rRaWxMbYzBsUxOTn4lv_8njFl9Rjm6MtIVUlRjHjT8qKqDioTQ0oRBzVFt9VxpzhT-5jUISZVYlKvMak9JA5QKmL_gPGf9X-oF9wPmeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938501561</pqid></control><display><type>article</type><title>Doping effect of Europium (Eu3+) on flower-like ZnO nanostructures: shape variations, optical properties and its applicability in electrochemical sensing of heavy metal (Lead) ion detection</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tahir, Asma ; Want, Basharat</creator><creatorcontrib>Tahir, Asma ; Want, Basharat</creatorcontrib><description>Hydrothermal synthesis has been effectively used to create pure and Europium (Eu 3+ ) doped (1, 3 &amp; 5%) ZnO nanostructures. The as-synthesized structures were analyzed using a range of spectroscopic and microscopic techniques such as X-ray, UV–Vis, FTIR, PL, and SEM analysis. It was discovered that the shape of the fabricated flower-like ZnO nanostructures made of mixed compact clustered nanorods could be meticulously governed by changing the Eu 3+ dopant amount within the desired threshold. The distinctive photoluminescence (PL) properties indicate that energy is transferred from excited ZnO material, precisely at its band-gap (3.17 eV), to the Eu 3+ states through the luminescent defects present in the nanoparticles. Considering, the increasing presence of heavy metal ions poses a continuous risk to both human health and ecosystems, we introduced for the first time, an electrochemical spectroscopy analysis of Europium-doped ZnO (Eu 3+ : ZnO) as modifications to the glassy carbon electrodes for lead (Pb 2+ ) heavy metal ion detection. Electrochemical impedance spectroscopy, cyclic voltammetry, and square wave voltammetry were used to test the sensor’s sensing ability. Differential pulse voltammetry reveals the remarkable sensitivity towards Pb 2+ ions with a 0.002 µM detection limit. Graphical Abstract</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-024-07358-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Chemical synthesis ; Condensed Matter Physics ; Electrochemical impedance spectroscopy ; Electrons ; Europium ; Glassy carbon ; Heavy metals ; Ion detectors ; Lead ; Machines ; Manufacturing ; Metal ions ; Nanorods ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Optical properties ; Photoluminescence ; Physics ; Physics and Astronomy ; Processes ; Spectrum analysis ; Square waves ; Surfaces and Interfaces ; Thin Films ; Voltammetry ; Zinc oxide</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2024-04, Vol.130 (4), Article 217</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-dc6e9b994bed12d61d4c30850e9393a48a7ac59cbddd7f91b756a32ae5cd7cce3</citedby><cites>FETCH-LOGICAL-c319t-dc6e9b994bed12d61d4c30850e9393a48a7ac59cbddd7f91b756a32ae5cd7cce3</cites><orcidid>0009-0005-6297-6740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-024-07358-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-024-07358-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Tahir, Asma</creatorcontrib><creatorcontrib>Want, Basharat</creatorcontrib><title>Doping effect of Europium (Eu3+) on flower-like ZnO nanostructures: shape variations, optical properties and its applicability in electrochemical sensing of heavy metal (Lead) ion detection</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Hydrothermal synthesis has been effectively used to create pure and Europium (Eu 3+ ) doped (1, 3 &amp; 5%) ZnO nanostructures. The as-synthesized structures were analyzed using a range of spectroscopic and microscopic techniques such as X-ray, UV–Vis, FTIR, PL, and SEM analysis. It was discovered that the shape of the fabricated flower-like ZnO nanostructures made of mixed compact clustered nanorods could be meticulously governed by changing the Eu 3+ dopant amount within the desired threshold. The distinctive photoluminescence (PL) properties indicate that energy is transferred from excited ZnO material, precisely at its band-gap (3.17 eV), to the Eu 3+ states through the luminescent defects present in the nanoparticles. Considering, the increasing presence of heavy metal ions poses a continuous risk to both human health and ecosystems, we introduced for the first time, an electrochemical spectroscopy analysis of Europium-doped ZnO (Eu 3+ : ZnO) as modifications to the glassy carbon electrodes for lead (Pb 2+ ) heavy metal ion detection. Electrochemical impedance spectroscopy, cyclic voltammetry, and square wave voltammetry were used to test the sensor’s sensing ability. Differential pulse voltammetry reveals the remarkable sensitivity towards Pb 2+ ions with a 0.002 µM detection limit. Graphical Abstract</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Condensed Matter Physics</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrons</subject><subject>Europium</subject><subject>Glassy carbon</subject><subject>Heavy metals</subject><subject>Ion detectors</subject><subject>Lead</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Metal ions</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Spectrum analysis</subject><subject>Square waves</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Voltammetry</subject><subject>Zinc oxide</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc9uGyEQxlHUSnXTvkBPI-WSKKGFZf-Y3qLESSpZyqW99IJYmI1J17AFNpUfLu8WHFfqrVwGDd_vm0EfIZ84-8wZ674kxoSQlFU1ZZ1olpQfkQWvRUVZK9gbsmCy7uhSyPYdeZ_SIyunrqoFeb4Ok_MPgMOAJkMYYDXH0pq3cLqaxfkZBA_DGP5gpKP7hfDT34PXPqQcZ5PniOkrpI2eEJ50dDq74NMFhCk7o0eYihfG7DCB9hZcLnWaxvLWu9HlHTgPOJbJMZgNbl-ZhD7tVyq7bFA_7WCLubRP16jtGRR_sJgLUm4fyNtBjwk__q3H5MfN6vvVHV3f3367ulxTI7jM1JoWZS9l3aPllW25rY1gy4ahFFLoeqk7bRppemttN0jed02rRaWxMbYzBsUxOTn4lv_8njFl9Rjm6MtIVUlRjHjT8qKqDioTQ0oRBzVFt9VxpzhT-5jUISZVYlKvMak9JA5QKmL_gPGf9X-oF9wPmeE</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Tahir, Asma</creator><creator>Want, Basharat</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-6297-6740</orcidid></search><sort><creationdate>20240401</creationdate><title>Doping effect of Europium (Eu3+) on flower-like ZnO nanostructures: shape variations, optical properties and its applicability in electrochemical sensing of heavy metal (Lead) ion detection</title><author>Tahir, Asma ; Want, Basharat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-dc6e9b994bed12d61d4c30850e9393a48a7ac59cbddd7f91b756a32ae5cd7cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Condensed Matter Physics</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrons</topic><topic>Europium</topic><topic>Glassy carbon</topic><topic>Heavy metals</topic><topic>Ion detectors</topic><topic>Lead</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Metal ions</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Spectrum analysis</topic><topic>Square waves</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Voltammetry</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tahir, Asma</creatorcontrib><creatorcontrib>Want, Basharat</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tahir, Asma</au><au>Want, Basharat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doping effect of Europium (Eu3+) on flower-like ZnO nanostructures: shape variations, optical properties and its applicability in electrochemical sensing of heavy metal (Lead) ion detection</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>130</volume><issue>4</issue><artnum>217</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Hydrothermal synthesis has been effectively used to create pure and Europium (Eu 3+ ) doped (1, 3 &amp; 5%) ZnO nanostructures. The as-synthesized structures were analyzed using a range of spectroscopic and microscopic techniques such as X-ray, UV–Vis, FTIR, PL, and SEM analysis. It was discovered that the shape of the fabricated flower-like ZnO nanostructures made of mixed compact clustered nanorods could be meticulously governed by changing the Eu 3+ dopant amount within the desired threshold. The distinctive photoluminescence (PL) properties indicate that energy is transferred from excited ZnO material, precisely at its band-gap (3.17 eV), to the Eu 3+ states through the luminescent defects present in the nanoparticles. Considering, the increasing presence of heavy metal ions poses a continuous risk to both human health and ecosystems, we introduced for the first time, an electrochemical spectroscopy analysis of Europium-doped ZnO (Eu 3+ : ZnO) as modifications to the glassy carbon electrodes for lead (Pb 2+ ) heavy metal ion detection. Electrochemical impedance spectroscopy, cyclic voltammetry, and square wave voltammetry were used to test the sensor’s sensing ability. Differential pulse voltammetry reveals the remarkable sensitivity towards Pb 2+ ions with a 0.002 µM detection limit. Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-024-07358-1</doi><orcidid>https://orcid.org/0009-0005-6297-6740</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2024-04, Vol.130 (4), Article 217
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2938501561
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemical synthesis
Condensed Matter Physics
Electrochemical impedance spectroscopy
Electrons
Europium
Glassy carbon
Heavy metals
Ion detectors
Lead
Machines
Manufacturing
Metal ions
Nanorods
Nanostructure
Nanotechnology
Optical and Electronic Materials
Optical properties
Photoluminescence
Physics
Physics and Astronomy
Processes
Spectrum analysis
Square waves
Surfaces and Interfaces
Thin Films
Voltammetry
Zinc oxide
title Doping effect of Europium (Eu3+) on flower-like ZnO nanostructures: shape variations, optical properties and its applicability in electrochemical sensing of heavy metal (Lead) ion detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doping%20effect%20of%20Europium%20(Eu3+)%20on%20flower-like%20ZnO%20nanostructures:%20shape%20variations,%20optical%20properties%20and%20its%20applicability%20in%20electrochemical%20sensing%20of%20heavy%20metal%20(Lead)%20ion%20detection&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Tahir,%20Asma&rft.date=2024-04-01&rft.volume=130&rft.issue=4&rft.artnum=217&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-024-07358-1&rft_dat=%3Cproquest_cross%3E2938501561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938501561&rft_id=info:pmid/&rfr_iscdi=true