A Probabilistic Particle Tracking Framework for Guided and Brownian Motion Systems with High Particle Densities

This paper presents a new framework for particle tracking based on a Gaussian Mixture Model (GMM). It is an extension of the state-of-the-art iterative reconstruction of individual particles by a continuous modeling of the particle trajectories considering the position and velocity as coupled quanti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science 2021-11, Vol.2 (6), p.485, Article 485
Hauptverfasser: Herzog, Sebastian, Schiepel, Daniel, Guido, Isabella, Barta, Robin, Wagner, Claus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!