Wear Behavior of a NiCr/AgVO3 Self-Lubricating Composite

NiCr/AgVO3 self-lubricating composite was prepared by powder cold-pressed method with the NiCr alloy as the matrix and 10 wt.% additive of AgVO3 as solid lubricant. The AgVO3 additive powder was synthesized by the precipitation method which exhibits a melting point of 460℃. Microstructure, phase com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta metallurgica sinica : English letters 2013-08, Vol.26 (4), p.435-440
Hauptverfasser: Zhang, Wenting, Du, Lingzhong, Lan, Hao, Huang, Chuanbing, Zhang, Weigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:NiCr/AgVO3 self-lubricating composite was prepared by powder cold-pressed method with the NiCr alloy as the matrix and 10 wt.% additive of AgVO3 as solid lubricant. The AgVO3 additive powder was synthesized by the precipitation method which exhibits a melting point of 460℃. Microstructure, phase composition and thermal properties of the AgVO3 powder, as well as the composite of NiCr/AgVO3 were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and differential scanning calorimeter (DSC). The friction and wear behavior of the specimens from room temperature (R.T.) to 800℃ was evaluated using a ball-on-disk tribometer and 3D white light interference (WLI). The results showed that the friction coefficient of this material under atmosphere decreases with temperature increasing from R.T. to 800 ~C. However, the wear rate firstly increases from R.T. to 200℃, almost remains stable from 200℃ to 600℃, and then decreases with further increasing the temperature up to 800 ℃. It is also found that the prepared composite materials show a better frictional behavior than NiCr alloy over the whole range of temperatures, which is mainly attributed to solid lubrication of AgVO3 exhibiting a lamella-slip structure at temperatures below 460℃ and forms liquid-film at elevated temperatures above the melting point.
ISSN:1006-7191
2194-1289
DOI:10.1007/s40195-013-0109-9