Research of mechanical and electrical properties of Cu–Sc and Cu–Zr alloys

The research paper presents the impact of the scandium additive and various conditions of the heat treatment on copper mechanical, electrical and heat resistance properties. The performed research works included manufacturing of CuSc0.15 and CuSc0.3 alloys through metallurgical synthesis with the us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of Civil and Mechanical Engineering 2020-03, Vol.20 (1), p.28, Article 28
Hauptverfasser: Franczak, Krystian, Kwaśniewski, Paweł, Kiesiewicz, Grzegorz, Zasadzińska, Małgorzata, Jurkiewicz, Bartosz, Strzępek, Paweł, Rdzawski, Zbigniew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 28
container_title Archives of Civil and Mechanical Engineering
container_volume 20
creator Franczak, Krystian
Kwaśniewski, Paweł
Kiesiewicz, Grzegorz
Zasadzińska, Małgorzata
Jurkiewicz, Bartosz
Strzępek, Paweł
Rdzawski, Zbigniew
description The research paper presents the impact of the scandium additive and various conditions of the heat treatment on copper mechanical, electrical and heat resistance properties. The performed research works included manufacturing of CuSc0.15 and CuSc0.3 alloys through metallurgical synthesis with the use of induction furnace and following crystallization in graphite crucibles at ambient temperature. Additionally, a CuZr0.15 alloy was produced as a reference material for previously synthesized Cu–Sc alloys. During research, the selection of heat treatment for the produced materials was conducted in order to obtain the highest mechanical–electrical properties ratio. Materials obtained in such a way were next subjected to thermal resistance tests. Parameters of thermal resistance test included temperatures from the range of 200–700 °C and 1 h of annealing time. The research has shown that CuSc0.15 and CuSc0.3 alloys have higher heat resistance after their precipitation hardening compared to the Cu–Zr alloy. The paper also presents microstructural research of the produced materials, which showed that alloying elements precipitates are mainly localized at the grain boundaries of the material structure.
doi_str_mv 10.1007/s43452-020-00035-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2938244598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2938244598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-717d849fb73dd300f13f56e4ed8b0a27642c9e281d968057907ff522b116c27c3</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWLQv4GnBc3TynRyl-AVFwY-Ll5BmE9uy3a3J9tCefAff0Cdxuyt48zQz8PvPDD-EzghcEAB1mTnjgmKggAGACbw7QCMKmmHGiD5EIyI5x0ZKcYzGOS87iICiRIoRengKObjk50UTi1Xwc1cvvKsKV5dFqIJvUz-uU7MOqV2EvOcmm-_Pr2ffQ33_lgpXVc02n6Kj6Kocxr_1BL3eXL9M7vD08fZ-cjXFnknWYkVUqbmJM8XKkgFEwqKQgYdSz8BRJTn1JlBNSiM1CGVAxSgonREiPVWenaDzYW_32Mcm5NYum02qu5OWGqYp58LojqID5VOTcwrRrtNi5dLWErB7dXZQZzt1tldnd12IDaHcwfV7SH-r_0n9APnOceQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938244598</pqid></control><display><type>article</type><title>Research of mechanical and electrical properties of Cu–Sc and Cu–Zr alloys</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Franczak, Krystian ; Kwaśniewski, Paweł ; Kiesiewicz, Grzegorz ; Zasadzińska, Małgorzata ; Jurkiewicz, Bartosz ; Strzępek, Paweł ; Rdzawski, Zbigniew</creator><creatorcontrib>Franczak, Krystian ; Kwaśniewski, Paweł ; Kiesiewicz, Grzegorz ; Zasadzińska, Małgorzata ; Jurkiewicz, Bartosz ; Strzępek, Paweł ; Rdzawski, Zbigniew</creatorcontrib><description>The research paper presents the impact of the scandium additive and various conditions of the heat treatment on copper mechanical, electrical and heat resistance properties. The performed research works included manufacturing of CuSc0.15 and CuSc0.3 alloys through metallurgical synthesis with the use of induction furnace and following crystallization in graphite crucibles at ambient temperature. Additionally, a CuZr0.15 alloy was produced as a reference material for previously synthesized Cu–Sc alloys. During research, the selection of heat treatment for the produced materials was conducted in order to obtain the highest mechanical–electrical properties ratio. Materials obtained in such a way were next subjected to thermal resistance tests. Parameters of thermal resistance test included temperatures from the range of 200–700 °C and 1 h of annealing time. The research has shown that CuSc0.15 and CuSc0.3 alloys have higher heat resistance after their precipitation hardening compared to the Cu–Zr alloy. The paper also presents microstructural research of the produced materials, which showed that alloying elements precipitates are mainly localized at the grain boundaries of the material structure.</description><identifier>ISSN: 1644-9665</identifier><identifier>EISSN: 2083-3318</identifier><identifier>EISSN: 1644-9665</identifier><identifier>DOI: 10.1007/s43452-020-00035-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Alloying elements ; Alloys ; Aluminum ; Ambient temperature ; Annealing ; Civil Engineering ; Cold ; Copper ; Copper base alloys ; Crucibles ; Crystallization ; Electric induction furnaces ; Electrical properties ; Engineering ; Grain boundaries ; Heat resistance ; Heat transfer ; Heat treatment ; Intermetallic compounds ; Manufacturing ; Mechanical Engineering ; Mechanical properties ; Metal forming ; Original Article ; Powder metallurgy ; Precipitates ; Precipitation hardening ; Scandium ; Strain hardening ; Structural Materials ; Temperature ; Thermal resistance ; Transmitters ; Yield stress ; Zirconium</subject><ispartof>Archives of Civil and Mechanical Engineering, 2020-03, Vol.20 (1), p.28, Article 28</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-717d849fb73dd300f13f56e4ed8b0a27642c9e281d968057907ff522b116c27c3</citedby><cites>FETCH-LOGICAL-c363t-717d849fb73dd300f13f56e4ed8b0a27642c9e281d968057907ff522b116c27c3</cites><orcidid>0000-0002-0135-3700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s43452-020-00035-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2938244598?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Franczak, Krystian</creatorcontrib><creatorcontrib>Kwaśniewski, Paweł</creatorcontrib><creatorcontrib>Kiesiewicz, Grzegorz</creatorcontrib><creatorcontrib>Zasadzińska, Małgorzata</creatorcontrib><creatorcontrib>Jurkiewicz, Bartosz</creatorcontrib><creatorcontrib>Strzępek, Paweł</creatorcontrib><creatorcontrib>Rdzawski, Zbigniew</creatorcontrib><title>Research of mechanical and electrical properties of Cu–Sc and Cu–Zr alloys</title><title>Archives of Civil and Mechanical Engineering</title><addtitle>Archiv.Civ.Mech.Eng</addtitle><description>The research paper presents the impact of the scandium additive and various conditions of the heat treatment on copper mechanical, electrical and heat resistance properties. The performed research works included manufacturing of CuSc0.15 and CuSc0.3 alloys through metallurgical synthesis with the use of induction furnace and following crystallization in graphite crucibles at ambient temperature. Additionally, a CuZr0.15 alloy was produced as a reference material for previously synthesized Cu–Sc alloys. During research, the selection of heat treatment for the produced materials was conducted in order to obtain the highest mechanical–electrical properties ratio. Materials obtained in such a way were next subjected to thermal resistance tests. Parameters of thermal resistance test included temperatures from the range of 200–700 °C and 1 h of annealing time. The research has shown that CuSc0.15 and CuSc0.3 alloys have higher heat resistance after their precipitation hardening compared to the Cu–Zr alloy. The paper also presents microstructural research of the produced materials, which showed that alloying elements precipitates are mainly localized at the grain boundaries of the material structure.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Ambient temperature</subject><subject>Annealing</subject><subject>Civil Engineering</subject><subject>Cold</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Crucibles</subject><subject>Crystallization</subject><subject>Electric induction furnaces</subject><subject>Electrical properties</subject><subject>Engineering</subject><subject>Grain boundaries</subject><subject>Heat resistance</subject><subject>Heat transfer</subject><subject>Heat treatment</subject><subject>Intermetallic compounds</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Metal forming</subject><subject>Original Article</subject><subject>Powder metallurgy</subject><subject>Precipitates</subject><subject>Precipitation hardening</subject><subject>Scandium</subject><subject>Strain hardening</subject><subject>Structural Materials</subject><subject>Temperature</subject><subject>Thermal resistance</subject><subject>Transmitters</subject><subject>Yield stress</subject><subject>Zirconium</subject><issn>1644-9665</issn><issn>2083-3318</issn><issn>1644-9665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kM1KAzEQx4MoWLQv4GnBc3TynRyl-AVFwY-Ll5BmE9uy3a3J9tCefAff0Cdxuyt48zQz8PvPDD-EzghcEAB1mTnjgmKggAGACbw7QCMKmmHGiD5EIyI5x0ZKcYzGOS87iICiRIoRengKObjk50UTi1Xwc1cvvKsKV5dFqIJvUz-uU7MOqV2EvOcmm-_Pr2ffQ33_lgpXVc02n6Kj6Kocxr_1BL3eXL9M7vD08fZ-cjXFnknWYkVUqbmJM8XKkgFEwqKQgYdSz8BRJTn1JlBNSiM1CGVAxSgonREiPVWenaDzYW_32Mcm5NYum02qu5OWGqYp58LojqID5VOTcwrRrtNi5dLWErB7dXZQZzt1tldnd12IDaHcwfV7SH-r_0n9APnOceQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Franczak, Krystian</creator><creator>Kwaśniewski, Paweł</creator><creator>Kiesiewicz, Grzegorz</creator><creator>Zasadzińska, Małgorzata</creator><creator>Jurkiewicz, Bartosz</creator><creator>Strzępek, Paweł</creator><creator>Rdzawski, Zbigniew</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0135-3700</orcidid></search><sort><creationdate>20200301</creationdate><title>Research of mechanical and electrical properties of Cu–Sc and Cu–Zr alloys</title><author>Franczak, Krystian ; Kwaśniewski, Paweł ; Kiesiewicz, Grzegorz ; Zasadzińska, Małgorzata ; Jurkiewicz, Bartosz ; Strzępek, Paweł ; Rdzawski, Zbigniew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-717d849fb73dd300f13f56e4ed8b0a27642c9e281d968057907ff522b116c27c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Ambient temperature</topic><topic>Annealing</topic><topic>Civil Engineering</topic><topic>Cold</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Crucibles</topic><topic>Crystallization</topic><topic>Electric induction furnaces</topic><topic>Electrical properties</topic><topic>Engineering</topic><topic>Grain boundaries</topic><topic>Heat resistance</topic><topic>Heat transfer</topic><topic>Heat treatment</topic><topic>Intermetallic compounds</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Metal forming</topic><topic>Original Article</topic><topic>Powder metallurgy</topic><topic>Precipitates</topic><topic>Precipitation hardening</topic><topic>Scandium</topic><topic>Strain hardening</topic><topic>Structural Materials</topic><topic>Temperature</topic><topic>Thermal resistance</topic><topic>Transmitters</topic><topic>Yield stress</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franczak, Krystian</creatorcontrib><creatorcontrib>Kwaśniewski, Paweł</creatorcontrib><creatorcontrib>Kiesiewicz, Grzegorz</creatorcontrib><creatorcontrib>Zasadzińska, Małgorzata</creatorcontrib><creatorcontrib>Jurkiewicz, Bartosz</creatorcontrib><creatorcontrib>Strzępek, Paweł</creatorcontrib><creatorcontrib>Rdzawski, Zbigniew</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Archives of Civil and Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franczak, Krystian</au><au>Kwaśniewski, Paweł</au><au>Kiesiewicz, Grzegorz</au><au>Zasadzińska, Małgorzata</au><au>Jurkiewicz, Bartosz</au><au>Strzępek, Paweł</au><au>Rdzawski, Zbigniew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research of mechanical and electrical properties of Cu–Sc and Cu–Zr alloys</atitle><jtitle>Archives of Civil and Mechanical Engineering</jtitle><stitle>Archiv.Civ.Mech.Eng</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>20</volume><issue>1</issue><spage>28</spage><pages>28-</pages><artnum>28</artnum><issn>1644-9665</issn><eissn>2083-3318</eissn><eissn>1644-9665</eissn><abstract>The research paper presents the impact of the scandium additive and various conditions of the heat treatment on copper mechanical, electrical and heat resistance properties. The performed research works included manufacturing of CuSc0.15 and CuSc0.3 alloys through metallurgical synthesis with the use of induction furnace and following crystallization in graphite crucibles at ambient temperature. Additionally, a CuZr0.15 alloy was produced as a reference material for previously synthesized Cu–Sc alloys. During research, the selection of heat treatment for the produced materials was conducted in order to obtain the highest mechanical–electrical properties ratio. Materials obtained in such a way were next subjected to thermal resistance tests. Parameters of thermal resistance test included temperatures from the range of 200–700 °C and 1 h of annealing time. The research has shown that CuSc0.15 and CuSc0.3 alloys have higher heat resistance after their precipitation hardening compared to the Cu–Zr alloy. The paper also presents microstructural research of the produced materials, which showed that alloying elements precipitates are mainly localized at the grain boundaries of the material structure.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s43452-020-00035-z</doi><orcidid>https://orcid.org/0000-0002-0135-3700</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1644-9665
ispartof Archives of Civil and Mechanical Engineering, 2020-03, Vol.20 (1), p.28, Article 28
issn 1644-9665
2083-3318
1644-9665
language eng
recordid cdi_proquest_journals_2938244598
source SpringerLink Journals; ProQuest Central
subjects Alloying elements
Alloys
Aluminum
Ambient temperature
Annealing
Civil Engineering
Cold
Copper
Copper base alloys
Crucibles
Crystallization
Electric induction furnaces
Electrical properties
Engineering
Grain boundaries
Heat resistance
Heat transfer
Heat treatment
Intermetallic compounds
Manufacturing
Mechanical Engineering
Mechanical properties
Metal forming
Original Article
Powder metallurgy
Precipitates
Precipitation hardening
Scandium
Strain hardening
Structural Materials
Temperature
Thermal resistance
Transmitters
Yield stress
Zirconium
title Research of mechanical and electrical properties of Cu–Sc and Cu–Zr alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20of%20mechanical%20and%20electrical%20properties%20of%20Cu%E2%80%93Sc%20and%20Cu%E2%80%93Zr%20alloys&rft.jtitle=Archives%20of%20Civil%20and%20Mechanical%20Engineering&rft.au=Franczak,%20Krystian&rft.date=2020-03-01&rft.volume=20&rft.issue=1&rft.spage=28&rft.pages=28-&rft.artnum=28&rft.issn=1644-9665&rft.eissn=2083-3318&rft_id=info:doi/10.1007/s43452-020-00035-z&rft_dat=%3Cproquest_cross%3E2938244598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938244598&rft_id=info:pmid/&rfr_iscdi=true