Research of mechanical and electrical properties of Cu–Sc and Cu–Zr alloys
The research paper presents the impact of the scandium additive and various conditions of the heat treatment on copper mechanical, electrical and heat resistance properties. The performed research works included manufacturing of CuSc0.15 and CuSc0.3 alloys through metallurgical synthesis with the us...
Gespeichert in:
Veröffentlicht in: | Archives of Civil and Mechanical Engineering 2020-03, Vol.20 (1), p.28, Article 28 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 28 |
container_title | Archives of Civil and Mechanical Engineering |
container_volume | 20 |
creator | Franczak, Krystian Kwaśniewski, Paweł Kiesiewicz, Grzegorz Zasadzińska, Małgorzata Jurkiewicz, Bartosz Strzępek, Paweł Rdzawski, Zbigniew |
description | The research paper presents the impact of the scandium additive and various conditions of the heat treatment on copper mechanical, electrical and heat resistance properties. The performed research works included manufacturing of CuSc0.15 and CuSc0.3 alloys through metallurgical synthesis with the use of induction furnace and following crystallization in graphite crucibles at ambient temperature. Additionally, a CuZr0.15 alloy was produced as a reference material for previously synthesized Cu–Sc alloys. During research, the selection of heat treatment for the produced materials was conducted in order to obtain the highest mechanical–electrical properties ratio. Materials obtained in such a way were next subjected to thermal resistance tests. Parameters of thermal resistance test included temperatures from the range of 200–700 °C and 1 h of annealing time. The research has shown that CuSc0.15 and CuSc0.3 alloys have higher heat resistance after their precipitation hardening compared to the Cu–Zr alloy. The paper also presents microstructural research of the produced materials, which showed that alloying elements precipitates are mainly localized at the grain boundaries of the material structure. |
doi_str_mv | 10.1007/s43452-020-00035-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2938244598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2938244598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-717d849fb73dd300f13f56e4ed8b0a27642c9e281d968057907ff522b116c27c3</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWLQv4GnBc3TynRyl-AVFwY-Ll5BmE9uy3a3J9tCefAff0Cdxuyt48zQz8PvPDD-EzghcEAB1mTnjgmKggAGACbw7QCMKmmHGiD5EIyI5x0ZKcYzGOS87iICiRIoRengKObjk50UTi1Xwc1cvvKsKV5dFqIJvUz-uU7MOqV2EvOcmm-_Pr2ffQ33_lgpXVc02n6Kj6Kocxr_1BL3eXL9M7vD08fZ-cjXFnknWYkVUqbmJM8XKkgFEwqKQgYdSz8BRJTn1JlBNSiM1CGVAxSgonREiPVWenaDzYW_32Mcm5NYum02qu5OWGqYp58LojqID5VOTcwrRrtNi5dLWErB7dXZQZzt1tldnd12IDaHcwfV7SH-r_0n9APnOceQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938244598</pqid></control><display><type>article</type><title>Research of mechanical and electrical properties of Cu–Sc and Cu–Zr alloys</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Franczak, Krystian ; Kwaśniewski, Paweł ; Kiesiewicz, Grzegorz ; Zasadzińska, Małgorzata ; Jurkiewicz, Bartosz ; Strzępek, Paweł ; Rdzawski, Zbigniew</creator><creatorcontrib>Franczak, Krystian ; Kwaśniewski, Paweł ; Kiesiewicz, Grzegorz ; Zasadzińska, Małgorzata ; Jurkiewicz, Bartosz ; Strzępek, Paweł ; Rdzawski, Zbigniew</creatorcontrib><description>The research paper presents the impact of the scandium additive and various conditions of the heat treatment on copper mechanical, electrical and heat resistance properties. The performed research works included manufacturing of CuSc0.15 and CuSc0.3 alloys through metallurgical synthesis with the use of induction furnace and following crystallization in graphite crucibles at ambient temperature. Additionally, a CuZr0.15 alloy was produced as a reference material for previously synthesized Cu–Sc alloys. During research, the selection of heat treatment for the produced materials was conducted in order to obtain the highest mechanical–electrical properties ratio. Materials obtained in such a way were next subjected to thermal resistance tests. Parameters of thermal resistance test included temperatures from the range of 200–700 °C and 1 h of annealing time. The research has shown that CuSc0.15 and CuSc0.3 alloys have higher heat resistance after their precipitation hardening compared to the Cu–Zr alloy. The paper also presents microstructural research of the produced materials, which showed that alloying elements precipitates are mainly localized at the grain boundaries of the material structure.</description><identifier>ISSN: 1644-9665</identifier><identifier>EISSN: 2083-3318</identifier><identifier>EISSN: 1644-9665</identifier><identifier>DOI: 10.1007/s43452-020-00035-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Alloying elements ; Alloys ; Aluminum ; Ambient temperature ; Annealing ; Civil Engineering ; Cold ; Copper ; Copper base alloys ; Crucibles ; Crystallization ; Electric induction furnaces ; Electrical properties ; Engineering ; Grain boundaries ; Heat resistance ; Heat transfer ; Heat treatment ; Intermetallic compounds ; Manufacturing ; Mechanical Engineering ; Mechanical properties ; Metal forming ; Original Article ; Powder metallurgy ; Precipitates ; Precipitation hardening ; Scandium ; Strain hardening ; Structural Materials ; Temperature ; Thermal resistance ; Transmitters ; Yield stress ; Zirconium</subject><ispartof>Archives of Civil and Mechanical Engineering, 2020-03, Vol.20 (1), p.28, Article 28</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-717d849fb73dd300f13f56e4ed8b0a27642c9e281d968057907ff522b116c27c3</citedby><cites>FETCH-LOGICAL-c363t-717d849fb73dd300f13f56e4ed8b0a27642c9e281d968057907ff522b116c27c3</cites><orcidid>0000-0002-0135-3700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s43452-020-00035-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2938244598?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Franczak, Krystian</creatorcontrib><creatorcontrib>Kwaśniewski, Paweł</creatorcontrib><creatorcontrib>Kiesiewicz, Grzegorz</creatorcontrib><creatorcontrib>Zasadzińska, Małgorzata</creatorcontrib><creatorcontrib>Jurkiewicz, Bartosz</creatorcontrib><creatorcontrib>Strzępek, Paweł</creatorcontrib><creatorcontrib>Rdzawski, Zbigniew</creatorcontrib><title>Research of mechanical and electrical properties of Cu–Sc and Cu–Zr alloys</title><title>Archives of Civil and Mechanical Engineering</title><addtitle>Archiv.Civ.Mech.Eng</addtitle><description>The research paper presents the impact of the scandium additive and various conditions of the heat treatment on copper mechanical, electrical and heat resistance properties. The performed research works included manufacturing of CuSc0.15 and CuSc0.3 alloys through metallurgical synthesis with the use of induction furnace and following crystallization in graphite crucibles at ambient temperature. Additionally, a CuZr0.15 alloy was produced as a reference material for previously synthesized Cu–Sc alloys. During research, the selection of heat treatment for the produced materials was conducted in order to obtain the highest mechanical–electrical properties ratio. Materials obtained in such a way were next subjected to thermal resistance tests. Parameters of thermal resistance test included temperatures from the range of 200–700 °C and 1 h of annealing time. The research has shown that CuSc0.15 and CuSc0.3 alloys have higher heat resistance after their precipitation hardening compared to the Cu–Zr alloy. The paper also presents microstructural research of the produced materials, which showed that alloying elements precipitates are mainly localized at the grain boundaries of the material structure.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Ambient temperature</subject><subject>Annealing</subject><subject>Civil Engineering</subject><subject>Cold</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Crucibles</subject><subject>Crystallization</subject><subject>Electric induction furnaces</subject><subject>Electrical properties</subject><subject>Engineering</subject><subject>Grain boundaries</subject><subject>Heat resistance</subject><subject>Heat transfer</subject><subject>Heat treatment</subject><subject>Intermetallic compounds</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Metal forming</subject><subject>Original Article</subject><subject>Powder metallurgy</subject><subject>Precipitates</subject><subject>Precipitation hardening</subject><subject>Scandium</subject><subject>Strain hardening</subject><subject>Structural Materials</subject><subject>Temperature</subject><subject>Thermal resistance</subject><subject>Transmitters</subject><subject>Yield stress</subject><subject>Zirconium</subject><issn>1644-9665</issn><issn>2083-3318</issn><issn>1644-9665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kM1KAzEQx4MoWLQv4GnBc3TynRyl-AVFwY-Ll5BmE9uy3a3J9tCefAff0Cdxuyt48zQz8PvPDD-EzghcEAB1mTnjgmKggAGACbw7QCMKmmHGiD5EIyI5x0ZKcYzGOS87iICiRIoRengKObjk50UTi1Xwc1cvvKsKV5dFqIJvUz-uU7MOqV2EvOcmm-_Pr2ffQ33_lgpXVc02n6Kj6Kocxr_1BL3eXL9M7vD08fZ-cjXFnknWYkVUqbmJM8XKkgFEwqKQgYdSz8BRJTn1JlBNSiM1CGVAxSgonREiPVWenaDzYW_32Mcm5NYum02qu5OWGqYp58LojqID5VOTcwrRrtNi5dLWErB7dXZQZzt1tldnd12IDaHcwfV7SH-r_0n9APnOceQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Franczak, Krystian</creator><creator>Kwaśniewski, Paweł</creator><creator>Kiesiewicz, Grzegorz</creator><creator>Zasadzińska, Małgorzata</creator><creator>Jurkiewicz, Bartosz</creator><creator>Strzępek, Paweł</creator><creator>Rdzawski, Zbigniew</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0135-3700</orcidid></search><sort><creationdate>20200301</creationdate><title>Research of mechanical and electrical properties of Cu–Sc and Cu–Zr alloys</title><author>Franczak, Krystian ; Kwaśniewski, Paweł ; Kiesiewicz, Grzegorz ; Zasadzińska, Małgorzata ; Jurkiewicz, Bartosz ; Strzępek, Paweł ; Rdzawski, Zbigniew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-717d849fb73dd300f13f56e4ed8b0a27642c9e281d968057907ff522b116c27c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Ambient temperature</topic><topic>Annealing</topic><topic>Civil Engineering</topic><topic>Cold</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Crucibles</topic><topic>Crystallization</topic><topic>Electric induction furnaces</topic><topic>Electrical properties</topic><topic>Engineering</topic><topic>Grain boundaries</topic><topic>Heat resistance</topic><topic>Heat transfer</topic><topic>Heat treatment</topic><topic>Intermetallic compounds</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Metal forming</topic><topic>Original Article</topic><topic>Powder metallurgy</topic><topic>Precipitates</topic><topic>Precipitation hardening</topic><topic>Scandium</topic><topic>Strain hardening</topic><topic>Structural Materials</topic><topic>Temperature</topic><topic>Thermal resistance</topic><topic>Transmitters</topic><topic>Yield stress</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franczak, Krystian</creatorcontrib><creatorcontrib>Kwaśniewski, Paweł</creatorcontrib><creatorcontrib>Kiesiewicz, Grzegorz</creatorcontrib><creatorcontrib>Zasadzińska, Małgorzata</creatorcontrib><creatorcontrib>Jurkiewicz, Bartosz</creatorcontrib><creatorcontrib>Strzępek, Paweł</creatorcontrib><creatorcontrib>Rdzawski, Zbigniew</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Archives of Civil and Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franczak, Krystian</au><au>Kwaśniewski, Paweł</au><au>Kiesiewicz, Grzegorz</au><au>Zasadzińska, Małgorzata</au><au>Jurkiewicz, Bartosz</au><au>Strzępek, Paweł</au><au>Rdzawski, Zbigniew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research of mechanical and electrical properties of Cu–Sc and Cu–Zr alloys</atitle><jtitle>Archives of Civil and Mechanical Engineering</jtitle><stitle>Archiv.Civ.Mech.Eng</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>20</volume><issue>1</issue><spage>28</spage><pages>28-</pages><artnum>28</artnum><issn>1644-9665</issn><eissn>2083-3318</eissn><eissn>1644-9665</eissn><abstract>The research paper presents the impact of the scandium additive and various conditions of the heat treatment on copper mechanical, electrical and heat resistance properties. The performed research works included manufacturing of CuSc0.15 and CuSc0.3 alloys through metallurgical synthesis with the use of induction furnace and following crystallization in graphite crucibles at ambient temperature. Additionally, a CuZr0.15 alloy was produced as a reference material for previously synthesized Cu–Sc alloys. During research, the selection of heat treatment for the produced materials was conducted in order to obtain the highest mechanical–electrical properties ratio. Materials obtained in such a way were next subjected to thermal resistance tests. Parameters of thermal resistance test included temperatures from the range of 200–700 °C and 1 h of annealing time. The research has shown that CuSc0.15 and CuSc0.3 alloys have higher heat resistance after their precipitation hardening compared to the Cu–Zr alloy. The paper also presents microstructural research of the produced materials, which showed that alloying elements precipitates are mainly localized at the grain boundaries of the material structure.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s43452-020-00035-z</doi><orcidid>https://orcid.org/0000-0002-0135-3700</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1644-9665 |
ispartof | Archives of Civil and Mechanical Engineering, 2020-03, Vol.20 (1), p.28, Article 28 |
issn | 1644-9665 2083-3318 1644-9665 |
language | eng |
recordid | cdi_proquest_journals_2938244598 |
source | SpringerLink Journals; ProQuest Central |
subjects | Alloying elements Alloys Aluminum Ambient temperature Annealing Civil Engineering Cold Copper Copper base alloys Crucibles Crystallization Electric induction furnaces Electrical properties Engineering Grain boundaries Heat resistance Heat transfer Heat treatment Intermetallic compounds Manufacturing Mechanical Engineering Mechanical properties Metal forming Original Article Powder metallurgy Precipitates Precipitation hardening Scandium Strain hardening Structural Materials Temperature Thermal resistance Transmitters Yield stress Zirconium |
title | Research of mechanical and electrical properties of Cu–Sc and Cu–Zr alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20of%20mechanical%20and%20electrical%20properties%20of%20Cu%E2%80%93Sc%20and%20Cu%E2%80%93Zr%20alloys&rft.jtitle=Archives%20of%20Civil%20and%20Mechanical%20Engineering&rft.au=Franczak,%20Krystian&rft.date=2020-03-01&rft.volume=20&rft.issue=1&rft.spage=28&rft.pages=28-&rft.artnum=28&rft.issn=1644-9665&rft.eissn=2083-3318&rft_id=info:doi/10.1007/s43452-020-00035-z&rft_dat=%3Cproquest_cross%3E2938244598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938244598&rft_id=info:pmid/&rfr_iscdi=true |