An optimal wavelet transform grey multivariate convolution model to forecast electricity demand: a novel approach

PurposeFor some years now, Cameroon has seen a significant increase in its electricity demand, and this need is bound to grow within the next few years owing to the current economic growth and the ambitious projects underway. Therefore, one of the state's priorities is the mastery of electricit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Grey systems 2024-03, Vol.14 (2), p.233-262
Hauptverfasser: Sapnken, Flavian Emmanuel, Hamaidi, Mohammed, Hamed, Mohammad M., Hassane, Abdelhamid Issa, Tamba, Jean Gaston
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 262
container_issue 2
container_start_page 233
container_title Grey systems
container_volume 14
creator Sapnken, Flavian Emmanuel
Hamaidi, Mohammed
Hamed, Mohammad M.
Hassane, Abdelhamid Issa
Tamba, Jean Gaston
description PurposeFor some years now, Cameroon has seen a significant increase in its electricity demand, and this need is bound to grow within the next few years owing to the current economic growth and the ambitious projects underway. Therefore, one of the state's priorities is the mastery of electricity demand. In order to get there, it would be helpful to have reliable forecasting tools. This study proposes a novel version of the discrete grey multivariate convolution model (ODGMC(1,N)).Design/methodology/approachSpecifically, a linear corrective term is added to its structure, parameterisation is done in a way that is consistent to the modelling procedure and the cumulated forecasting function of ODGMC(1,N) is obtained through an iterative technique.FindingsResults show that ODGMC(1,N) is more stable and can extract the relationships between the system's input variables. To demonstrate and validate the superiority of ODGMC(1,N), a practical example drawn from the projection of electricity demand in Cameroon till 2030 is used. The findings reveal that the proposed model has a higher prediction precision, with 1.74% mean absolute percentage error and 132.16 root mean square error.Originality/valueThese interesting results are due to (1) the stability of ODGMC(1,N) resulting from a good adequacy between parameters estimation and their implementation, (2) the addition of a term that takes into account the linear impact of time t on the model's performance and (3) the removal of irrelevant information from input data by wavelet transform filtration. Thus, the suggested ODGMC is a robust predictive and monitoring tool for tracking the evolution of electricity needs.
doi_str_mv 10.1108/GS-09-2023-0090
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2938184869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2938184869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-223e65712a65506cdcc82c6eaf8e34b0cc7c998683c1b836b378a64fc2f2c29a3</originalsourceid><addsrcrecordid>eNptkc1KAzEQx4MoWGrPXgOet83HbjbxVopWoeCheg7pbFa37G7WJK30bXwWn8yUiiA4l5nD_wN-g9A1JVNKiZwt1xlRGSOMZ4QocoZGjOQ8U1wW5793WV6iSQhbkqYgjFA2Qn7eYzfEpjMt_jB729qIozd9qJ3v8Ku3h6_PbtfGZm98Y6LF4Pq9a3excT3uXGVbHB1OYgsmRJz8EH0DTTzgynamr26xwb1LwdgMg3cG3q7QRW3aYCc_e4xe7u-eFw_Z6mn5uJivMuBExowxbkVRUmZEURABFYBkIKyppeX5hgCUoJQUkgPdSC42vJRG5DWwmgFTho_RzSk31b7vbIh663a-T5WaJTBU5lKopJqdVOBdCN7WevCJhj9oSvSRrV6uNVH6yFYf2SbH9OSwnfWmrf4x_HkG_wYbNHyG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938184869</pqid></control><display><type>article</type><title>An optimal wavelet transform grey multivariate convolution model to forecast electricity demand: a novel approach</title><source>Standard: Emerald eJournal Premier Collection</source><creator>Sapnken, Flavian Emmanuel ; Hamaidi, Mohammed ; Hamed, Mohammad M. ; Hassane, Abdelhamid Issa ; Tamba, Jean Gaston</creator><creatorcontrib>Sapnken, Flavian Emmanuel ; Hamaidi, Mohammed ; Hamed, Mohammad M. ; Hassane, Abdelhamid Issa ; Tamba, Jean Gaston</creatorcontrib><description>PurposeFor some years now, Cameroon has seen a significant increase in its electricity demand, and this need is bound to grow within the next few years owing to the current economic growth and the ambitious projects underway. Therefore, one of the state's priorities is the mastery of electricity demand. In order to get there, it would be helpful to have reliable forecasting tools. This study proposes a novel version of the discrete grey multivariate convolution model (ODGMC(1,N)).Design/methodology/approachSpecifically, a linear corrective term is added to its structure, parameterisation is done in a way that is consistent to the modelling procedure and the cumulated forecasting function of ODGMC(1,N) is obtained through an iterative technique.FindingsResults show that ODGMC(1,N) is more stable and can extract the relationships between the system's input variables. To demonstrate and validate the superiority of ODGMC(1,N), a practical example drawn from the projection of electricity demand in Cameroon till 2030 is used. The findings reveal that the proposed model has a higher prediction precision, with 1.74% mean absolute percentage error and 132.16 root mean square error.Originality/valueThese interesting results are due to (1) the stability of ODGMC(1,N) resulting from a good adequacy between parameters estimation and their implementation, (2) the addition of a term that takes into account the linear impact of time t on the model's performance and (3) the removal of irrelevant information from input data by wavelet transform filtration. Thus, the suggested ODGMC is a robust predictive and monitoring tool for tracking the evolution of electricity needs.</description><identifier>ISSN: 2043-9377</identifier><identifier>EISSN: 2043-9385</identifier><identifier>DOI: 10.1108/GS-09-2023-0090</identifier><language>eng</language><publisher>Bingley: Emerald Publishing Limited</publisher><subject>Adequacy ; Convolution ; Economic development ; Economic growth ; Electric power demand ; Electricity ; Electricity distribution ; Energy consumption ; Energy industry ; Fines &amp; penalties ; Forecasting ; GDP ; Gross Domestic Product ; Iterative methods ; Mathematical models ; Multivariate analysis ; Parameter estimation ; Parameterization ; Per capita ; Power plants ; Profits ; Rural areas ; Supply &amp; demand ; Wavelet transforms</subject><ispartof>Grey systems, 2024-03, Vol.14 (2), p.233-262</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-223e65712a65506cdcc82c6eaf8e34b0cc7c998683c1b836b378a64fc2f2c29a3</citedby><cites>FETCH-LOGICAL-c308t-223e65712a65506cdcc82c6eaf8e34b0cc7c998683c1b836b378a64fc2f2c29a3</cites><orcidid>0000-0002-7187-3103 ; 0000-0002-1870-0430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/GS-09-2023-0090/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,21694,27923,27924,53243</link.rule.ids></links><search><creatorcontrib>Sapnken, Flavian Emmanuel</creatorcontrib><creatorcontrib>Hamaidi, Mohammed</creatorcontrib><creatorcontrib>Hamed, Mohammad M.</creatorcontrib><creatorcontrib>Hassane, Abdelhamid Issa</creatorcontrib><creatorcontrib>Tamba, Jean Gaston</creatorcontrib><title>An optimal wavelet transform grey multivariate convolution model to forecast electricity demand: a novel approach</title><title>Grey systems</title><description>PurposeFor some years now, Cameroon has seen a significant increase in its electricity demand, and this need is bound to grow within the next few years owing to the current economic growth and the ambitious projects underway. Therefore, one of the state's priorities is the mastery of electricity demand. In order to get there, it would be helpful to have reliable forecasting tools. This study proposes a novel version of the discrete grey multivariate convolution model (ODGMC(1,N)).Design/methodology/approachSpecifically, a linear corrective term is added to its structure, parameterisation is done in a way that is consistent to the modelling procedure and the cumulated forecasting function of ODGMC(1,N) is obtained through an iterative technique.FindingsResults show that ODGMC(1,N) is more stable and can extract the relationships between the system's input variables. To demonstrate and validate the superiority of ODGMC(1,N), a practical example drawn from the projection of electricity demand in Cameroon till 2030 is used. The findings reveal that the proposed model has a higher prediction precision, with 1.74% mean absolute percentage error and 132.16 root mean square error.Originality/valueThese interesting results are due to (1) the stability of ODGMC(1,N) resulting from a good adequacy between parameters estimation and their implementation, (2) the addition of a term that takes into account the linear impact of time t on the model's performance and (3) the removal of irrelevant information from input data by wavelet transform filtration. Thus, the suggested ODGMC is a robust predictive and monitoring tool for tracking the evolution of electricity needs.</description><subject>Adequacy</subject><subject>Convolution</subject><subject>Economic development</subject><subject>Economic growth</subject><subject>Electric power demand</subject><subject>Electricity</subject><subject>Electricity distribution</subject><subject>Energy consumption</subject><subject>Energy industry</subject><subject>Fines &amp; penalties</subject><subject>Forecasting</subject><subject>GDP</subject><subject>Gross Domestic Product</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Multivariate analysis</subject><subject>Parameter estimation</subject><subject>Parameterization</subject><subject>Per capita</subject><subject>Power plants</subject><subject>Profits</subject><subject>Rural areas</subject><subject>Supply &amp; demand</subject><subject>Wavelet transforms</subject><issn>2043-9377</issn><issn>2043-9385</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkc1KAzEQx4MoWGrPXgOet83HbjbxVopWoeCheg7pbFa37G7WJK30bXwWn8yUiiA4l5nD_wN-g9A1JVNKiZwt1xlRGSOMZ4QocoZGjOQ8U1wW5793WV6iSQhbkqYgjFA2Qn7eYzfEpjMt_jB729qIozd9qJ3v8Ku3h6_PbtfGZm98Y6LF4Pq9a3excT3uXGVbHB1OYgsmRJz8EH0DTTzgynamr26xwb1LwdgMg3cG3q7QRW3aYCc_e4xe7u-eFw_Z6mn5uJivMuBExowxbkVRUmZEURABFYBkIKyppeX5hgCUoJQUkgPdSC42vJRG5DWwmgFTho_RzSk31b7vbIh663a-T5WaJTBU5lKopJqdVOBdCN7WevCJhj9oSvSRrV6uNVH6yFYf2SbH9OSwnfWmrf4x_HkG_wYbNHyG</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>Sapnken, Flavian Emmanuel</creator><creator>Hamaidi, Mohammed</creator><creator>Hamed, Mohammad M.</creator><creator>Hassane, Abdelhamid Issa</creator><creator>Tamba, Jean Gaston</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7187-3103</orcidid><orcidid>https://orcid.org/0000-0002-1870-0430</orcidid></search><sort><creationdate>20240308</creationdate><title>An optimal wavelet transform grey multivariate convolution model to forecast electricity demand: a novel approach</title><author>Sapnken, Flavian Emmanuel ; Hamaidi, Mohammed ; Hamed, Mohammad M. ; Hassane, Abdelhamid Issa ; Tamba, Jean Gaston</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-223e65712a65506cdcc82c6eaf8e34b0cc7c998683c1b836b378a64fc2f2c29a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adequacy</topic><topic>Convolution</topic><topic>Economic development</topic><topic>Economic growth</topic><topic>Electric power demand</topic><topic>Electricity</topic><topic>Electricity distribution</topic><topic>Energy consumption</topic><topic>Energy industry</topic><topic>Fines &amp; penalties</topic><topic>Forecasting</topic><topic>GDP</topic><topic>Gross Domestic Product</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Multivariate analysis</topic><topic>Parameter estimation</topic><topic>Parameterization</topic><topic>Per capita</topic><topic>Power plants</topic><topic>Profits</topic><topic>Rural areas</topic><topic>Supply &amp; demand</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sapnken, Flavian Emmanuel</creatorcontrib><creatorcontrib>Hamaidi, Mohammed</creatorcontrib><creatorcontrib>Hamed, Mohammad M.</creatorcontrib><creatorcontrib>Hassane, Abdelhamid Issa</creatorcontrib><creatorcontrib>Tamba, Jean Gaston</creatorcontrib><collection>CrossRef</collection><jtitle>Grey systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sapnken, Flavian Emmanuel</au><au>Hamaidi, Mohammed</au><au>Hamed, Mohammad M.</au><au>Hassane, Abdelhamid Issa</au><au>Tamba, Jean Gaston</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimal wavelet transform grey multivariate convolution model to forecast electricity demand: a novel approach</atitle><jtitle>Grey systems</jtitle><date>2024-03-08</date><risdate>2024</risdate><volume>14</volume><issue>2</issue><spage>233</spage><epage>262</epage><pages>233-262</pages><issn>2043-9377</issn><eissn>2043-9385</eissn><abstract>PurposeFor some years now, Cameroon has seen a significant increase in its electricity demand, and this need is bound to grow within the next few years owing to the current economic growth and the ambitious projects underway. Therefore, one of the state's priorities is the mastery of electricity demand. In order to get there, it would be helpful to have reliable forecasting tools. This study proposes a novel version of the discrete grey multivariate convolution model (ODGMC(1,N)).Design/methodology/approachSpecifically, a linear corrective term is added to its structure, parameterisation is done in a way that is consistent to the modelling procedure and the cumulated forecasting function of ODGMC(1,N) is obtained through an iterative technique.FindingsResults show that ODGMC(1,N) is more stable and can extract the relationships between the system's input variables. To demonstrate and validate the superiority of ODGMC(1,N), a practical example drawn from the projection of electricity demand in Cameroon till 2030 is used. The findings reveal that the proposed model has a higher prediction precision, with 1.74% mean absolute percentage error and 132.16 root mean square error.Originality/valueThese interesting results are due to (1) the stability of ODGMC(1,N) resulting from a good adequacy between parameters estimation and their implementation, (2) the addition of a term that takes into account the linear impact of time t on the model's performance and (3) the removal of irrelevant information from input data by wavelet transform filtration. Thus, the suggested ODGMC is a robust predictive and monitoring tool for tracking the evolution of electricity needs.</abstract><cop>Bingley</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/GS-09-2023-0090</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-7187-3103</orcidid><orcidid>https://orcid.org/0000-0002-1870-0430</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2043-9377
ispartof Grey systems, 2024-03, Vol.14 (2), p.233-262
issn 2043-9377
2043-9385
language eng
recordid cdi_proquest_journals_2938184869
source Standard: Emerald eJournal Premier Collection
subjects Adequacy
Convolution
Economic development
Economic growth
Electric power demand
Electricity
Electricity distribution
Energy consumption
Energy industry
Fines & penalties
Forecasting
GDP
Gross Domestic Product
Iterative methods
Mathematical models
Multivariate analysis
Parameter estimation
Parameterization
Per capita
Power plants
Profits
Rural areas
Supply & demand
Wavelet transforms
title An optimal wavelet transform grey multivariate convolution model to forecast electricity demand: a novel approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimal%20wavelet%20transform%20grey%C2%A0multivariate%20convolution%20model%20to%20forecast%20electricity%20demand:%20a%20novel%20approach&rft.jtitle=Grey%20systems&rft.au=Sapnken,%20Flavian%20Emmanuel&rft.date=2024-03-08&rft.volume=14&rft.issue=2&rft.spage=233&rft.epage=262&rft.pages=233-262&rft.issn=2043-9377&rft.eissn=2043-9385&rft_id=info:doi/10.1108/GS-09-2023-0090&rft_dat=%3Cproquest_cross%3E2938184869%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938184869&rft_id=info:pmid/&rfr_iscdi=true