Federated Learning in Industrial IoT: A Privacy-Preserving Solution That Enables Sharing of Data in Hydrocarbon Explorations

Applying artificial intelligence (AI) to data from Industrial Internet of Things (IIoT) devices is a novel direction in geological studies. However, privacy and security concerns hinder the sharing of data, thus affecting the performance of current AI-based approaches. In this article, we propose a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2024-03, Vol.20 (3), p.1-10
Hauptverfasser: Hu, Xiangyu, Cai, Hanpeng, Alazab, Mamoun, Zhou, Wei, Haghighi, Mohammad Sayad, Wen, Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 3
container_start_page 1
container_title IEEE transactions on industrial informatics
container_volume 20
creator Hu, Xiangyu
Cai, Hanpeng
Alazab, Mamoun
Zhou, Wei
Haghighi, Mohammad Sayad
Wen, Sheng
description Applying artificial intelligence (AI) to data from Industrial Internet of Things (IIoT) devices is a novel direction in geological studies. However, privacy and security concerns hinder the sharing of data, thus affecting the performance of current AI-based approaches. In this article, we propose a novel data management style to address the privacy and security issues in joint hydrocarbon explorations. Federated learning can facilitate the analysis of multiple datasets without the need to share them, protecting private information of different companies in a virtual joint venture. We use the inference of petroleum reservoirs in karst stratigraphy as a case study. A federated learning-based enterprise data management framework is proposed to virtually integrate the information from different organizations. Our key contributions are summarized as follows. 1) A method for karst identification and inference is proposed, which uses neural networks to recognize the size of petroleum reservoirs in different karst areas. 2) A federated learning algorithm is applied to virtually aggregate data samples from different companies. 3) The performance of the new privacy-preserving integration model is compared with those of the individual/local deep learning models. Our results show that the proposed approach can substantially improve the accuracy of petroleum reservoir explorations.
doi_str_mv 10.1109/TII.2023.3306931
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2938026739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10287629</ieee_id><sourcerecordid>2938026739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-38b543a8f99f7d2c78cd5b4d9cd4c20e9edb0f5f781f55060c5479132ac7ec513</originalsourceid><addsrcrecordid>eNpNkMFLwzAUh4soOKd3Dx4CnjtfkqZtvA3dXGHgYPUc0iR1HbWZSTcc-Mebsh08vQfv-_0efFF0j2GCMfCnsigmBAidUAopp_giGmGe4BiAwWXYGcMxJUCvoxvvtwA0A8pH0e_caONkbzRaGum6pvtETYeKTu997xrZosKWz2iKVq45SHWMV8544w4Dt7btvm9sh8qN7NGsk1VrPFpvpBuutkavspdD2-KonVXSVYGd_exaGx6GnL-NrmrZenN3nuPoYz4rXxbx8v2teJkuY0US1sc0r1hCZV5zXmeaqCxXmlWJ5konioDhRldQszrLcc0YpKBYknFMiVSZUQzTcfR46t05-703vhdbu3ddeCkIpzmQNKM8UHCilLPeO1OLnWu-pDsKDGJwLIJjMTgWZ8ch8nCKNMaYfzjJszQ0_wHUrnje</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938026739</pqid></control><display><type>article</type><title>Federated Learning in Industrial IoT: A Privacy-Preserving Solution That Enables Sharing of Data in Hydrocarbon Explorations</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Xiangyu ; Cai, Hanpeng ; Alazab, Mamoun ; Zhou, Wei ; Haghighi, Mohammad Sayad ; Wen, Sheng</creator><creatorcontrib>Hu, Xiangyu ; Cai, Hanpeng ; Alazab, Mamoun ; Zhou, Wei ; Haghighi, Mohammad Sayad ; Wen, Sheng</creatorcontrib><description>Applying artificial intelligence (AI) to data from Industrial Internet of Things (IIoT) devices is a novel direction in geological studies. However, privacy and security concerns hinder the sharing of data, thus affecting the performance of current AI-based approaches. In this article, we propose a novel data management style to address the privacy and security issues in joint hydrocarbon explorations. Federated learning can facilitate the analysis of multiple datasets without the need to share them, protecting private information of different companies in a virtual joint venture. We use the inference of petroleum reservoirs in karst stratigraphy as a case study. A federated learning-based enterprise data management framework is proposed to virtually integrate the information from different organizations. Our key contributions are summarized as follows. 1) A method for karst identification and inference is proposed, which uses neural networks to recognize the size of petroleum reservoirs in different karst areas. 2) A federated learning algorithm is applied to virtually aggregate data samples from different companies. 3) The performance of the new privacy-preserving integration model is compared with those of the individual/local deep learning models. Our results show that the proposed approach can substantially improve the accuracy of petroleum reservoir explorations.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2023.3306931</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Artificial intelligence (AI) ; Cybersecurity ; Data management ; Data privacy ; Deep learning ; Federated learning ; Geology ; Hydrocarbons ; Industrial applications ; Industrial Internet of Things ; industrial IoT (IIoT) ; Inference ; Internet of Things ; Karst ; Machine learning ; Neural networks ; oil reservoir exploration ; petroleum industry ; Privacy ; Reservoirs ; Servers ; smart enterprise systems ; Stratigraphy</subject><ispartof>IEEE transactions on industrial informatics, 2024-03, Vol.20 (3), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-38b543a8f99f7d2c78cd5b4d9cd4c20e9edb0f5f781f55060c5479132ac7ec513</cites><orcidid>0000-0003-0655-666X ; 0000-0002-4164-1221 ; 0000-0002-1599-5667 ; 0000-0002-2548-6348 ; 0000-0003-1042-837X ; 0000-0002-1928-3704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10287629$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10287629$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Xiangyu</creatorcontrib><creatorcontrib>Cai, Hanpeng</creatorcontrib><creatorcontrib>Alazab, Mamoun</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Haghighi, Mohammad Sayad</creatorcontrib><creatorcontrib>Wen, Sheng</creatorcontrib><title>Federated Learning in Industrial IoT: A Privacy-Preserving Solution That Enables Sharing of Data in Hydrocarbon Explorations</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Applying artificial intelligence (AI) to data from Industrial Internet of Things (IIoT) devices is a novel direction in geological studies. However, privacy and security concerns hinder the sharing of data, thus affecting the performance of current AI-based approaches. In this article, we propose a novel data management style to address the privacy and security issues in joint hydrocarbon explorations. Federated learning can facilitate the analysis of multiple datasets without the need to share them, protecting private information of different companies in a virtual joint venture. We use the inference of petroleum reservoirs in karst stratigraphy as a case study. A federated learning-based enterprise data management framework is proposed to virtually integrate the information from different organizations. Our key contributions are summarized as follows. 1) A method for karst identification and inference is proposed, which uses neural networks to recognize the size of petroleum reservoirs in different karst areas. 2) A federated learning algorithm is applied to virtually aggregate data samples from different companies. 3) The performance of the new privacy-preserving integration model is compared with those of the individual/local deep learning models. Our results show that the proposed approach can substantially improve the accuracy of petroleum reservoir explorations.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial intelligence (AI)</subject><subject>Cybersecurity</subject><subject>Data management</subject><subject>Data privacy</subject><subject>Deep learning</subject><subject>Federated learning</subject><subject>Geology</subject><subject>Hydrocarbons</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>industrial IoT (IIoT)</subject><subject>Inference</subject><subject>Internet of Things</subject><subject>Karst</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>oil reservoir exploration</subject><subject>petroleum industry</subject><subject>Privacy</subject><subject>Reservoirs</subject><subject>Servers</subject><subject>smart enterprise systems</subject><subject>Stratigraphy</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFLwzAUh4soOKd3Dx4CnjtfkqZtvA3dXGHgYPUc0iR1HbWZSTcc-Mebsh08vQfv-_0efFF0j2GCMfCnsigmBAidUAopp_giGmGe4BiAwWXYGcMxJUCvoxvvtwA0A8pH0e_caONkbzRaGum6pvtETYeKTu997xrZosKWz2iKVq45SHWMV8544w4Dt7btvm9sh8qN7NGsk1VrPFpvpBuutkavspdD2-KonVXSVYGd_exaGx6GnL-NrmrZenN3nuPoYz4rXxbx8v2teJkuY0US1sc0r1hCZV5zXmeaqCxXmlWJ5konioDhRldQszrLcc0YpKBYknFMiVSZUQzTcfR46t05-703vhdbu3ddeCkIpzmQNKM8UHCilLPeO1OLnWu-pDsKDGJwLIJjMTgWZ8ch8nCKNMaYfzjJszQ0_wHUrnje</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Hu, Xiangyu</creator><creator>Cai, Hanpeng</creator><creator>Alazab, Mamoun</creator><creator>Zhou, Wei</creator><creator>Haghighi, Mohammad Sayad</creator><creator>Wen, Sheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0655-666X</orcidid><orcidid>https://orcid.org/0000-0002-4164-1221</orcidid><orcidid>https://orcid.org/0000-0002-1599-5667</orcidid><orcidid>https://orcid.org/0000-0002-2548-6348</orcidid><orcidid>https://orcid.org/0000-0003-1042-837X</orcidid><orcidid>https://orcid.org/0000-0002-1928-3704</orcidid></search><sort><creationdate>20240301</creationdate><title>Federated Learning in Industrial IoT: A Privacy-Preserving Solution That Enables Sharing of Data in Hydrocarbon Explorations</title><author>Hu, Xiangyu ; Cai, Hanpeng ; Alazab, Mamoun ; Zhou, Wei ; Haghighi, Mohammad Sayad ; Wen, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-38b543a8f99f7d2c78cd5b4d9cd4c20e9edb0f5f781f55060c5479132ac7ec513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial intelligence (AI)</topic><topic>Cybersecurity</topic><topic>Data management</topic><topic>Data privacy</topic><topic>Deep learning</topic><topic>Federated learning</topic><topic>Geology</topic><topic>Hydrocarbons</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>industrial IoT (IIoT)</topic><topic>Inference</topic><topic>Internet of Things</topic><topic>Karst</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>oil reservoir exploration</topic><topic>petroleum industry</topic><topic>Privacy</topic><topic>Reservoirs</topic><topic>Servers</topic><topic>smart enterprise systems</topic><topic>Stratigraphy</topic><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xiangyu</creatorcontrib><creatorcontrib>Cai, Hanpeng</creatorcontrib><creatorcontrib>Alazab, Mamoun</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Haghighi, Mohammad Sayad</creatorcontrib><creatorcontrib>Wen, Sheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Xiangyu</au><au>Cai, Hanpeng</au><au>Alazab, Mamoun</au><au>Zhou, Wei</au><au>Haghighi, Mohammad Sayad</au><au>Wen, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Federated Learning in Industrial IoT: A Privacy-Preserving Solution That Enables Sharing of Data in Hydrocarbon Explorations</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>20</volume><issue>3</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Applying artificial intelligence (AI) to data from Industrial Internet of Things (IIoT) devices is a novel direction in geological studies. However, privacy and security concerns hinder the sharing of data, thus affecting the performance of current AI-based approaches. In this article, we propose a novel data management style to address the privacy and security issues in joint hydrocarbon explorations. Federated learning can facilitate the analysis of multiple datasets without the need to share them, protecting private information of different companies in a virtual joint venture. We use the inference of petroleum reservoirs in karst stratigraphy as a case study. A federated learning-based enterprise data management framework is proposed to virtually integrate the information from different organizations. Our key contributions are summarized as follows. 1) A method for karst identification and inference is proposed, which uses neural networks to recognize the size of petroleum reservoirs in different karst areas. 2) A federated learning algorithm is applied to virtually aggregate data samples from different companies. 3) The performance of the new privacy-preserving integration model is compared with those of the individual/local deep learning models. Our results show that the proposed approach can substantially improve the accuracy of petroleum reservoir explorations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2023.3306931</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0655-666X</orcidid><orcidid>https://orcid.org/0000-0002-4164-1221</orcidid><orcidid>https://orcid.org/0000-0002-1599-5667</orcidid><orcidid>https://orcid.org/0000-0002-2548-6348</orcidid><orcidid>https://orcid.org/0000-0003-1042-837X</orcidid><orcidid>https://orcid.org/0000-0002-1928-3704</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2024-03, Vol.20 (3), p.1-10
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2938026739
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial intelligence
Artificial intelligence (AI)
Cybersecurity
Data management
Data privacy
Deep learning
Federated learning
Geology
Hydrocarbons
Industrial applications
Industrial Internet of Things
industrial IoT (IIoT)
Inference
Internet of Things
Karst
Machine learning
Neural networks
oil reservoir exploration
petroleum industry
Privacy
Reservoirs
Servers
smart enterprise systems
Stratigraphy
title Federated Learning in Industrial IoT: A Privacy-Preserving Solution That Enables Sharing of Data in Hydrocarbon Explorations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T21%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Federated%20Learning%20in%20Industrial%20IoT:%20A%20Privacy-Preserving%20Solution%20That%20Enables%20Sharing%20of%20Data%20in%20Hydrocarbon%20Explorations&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Hu,%20Xiangyu&rft.date=2024-03-01&rft.volume=20&rft.issue=3&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2023.3306931&rft_dat=%3Cproquest_RIE%3E2938026739%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938026739&rft_id=info:pmid/&rft_ieee_id=10287629&rfr_iscdi=true