Improved Bi-LSTM With Distributed Nonlinear Extensions and Parallel Inputs for Soft Sensing

Industrial soft sensing models have found extensive application in predicting key process variables that are challenging to directly measure. However, the effectiveness of conventional soft sensing models is impacted by the intricate characteristics of process variables, such as high nonlinearity, c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2024-03, Vol.20 (3), p.1-8
Hauptverfasser: He, Yan-Lin, Wang, Peng-Fei, Zhu, Qun-Xiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 3
container_start_page 1
container_title IEEE transactions on industrial informatics
container_volume 20
creator He, Yan-Lin
Wang, Peng-Fei
Zhu, Qun-Xiong
description Industrial soft sensing models have found extensive application in predicting key process variables that are challenging to directly measure. However, the effectiveness of conventional soft sensing models is impacted by the intricate characteristics of process variables, such as high nonlinearity, coupling, and complex dynamicity. To address this limitation, an enhanced bidirectional long short-term memory (Bi-LSTM) model based on distributed nonlinear extensions integrated with parallel inputs (DNEPI-Bi-LSTM) is proposed for constructing the soft sensing model. First, to account for the differential impact between inputs and outputs, partial correlation is employed to segregate the inputs into two categories: positive subinputs and negative subinputs. Subsequently, these two distributed subinputs are transformed into nonlinear space by passing through the hidden layer of the extreme learning machine. The resulting outputs from the hidden layer are considered as distributed nonlinear extensions. Finally, the enhanced DNEPI-Bi-LSTM soft sensing model is developed using parallel inputs integrated with distributed nonlinear extensions. To assess the efficacy of DNEPI-Bi-LSTM, an industrial process known as the sulfur recovery unit is adopted. Simulation results illustrate that DNEPI-Bi-LSTM outperforms other advanced models in terms of accuracy, showcasing its potential in industrial applications.
doi_str_mv 10.1109/TII.2023.3313631
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2938026712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10258472</ieee_id><sourcerecordid>2938026712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-ebe27aff89ad51fa0e0334fb182a09b17ae2057b9b8a86a7e961da27dd88ba543</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk4523Ftj1AKRCofUosYGCynscFVmhTbQfDvSdUOTHfSPe-d7kHonMCIEFBXi6IYUaBsxBhhY0YO0IConGQAHA77nnOSMQrsGJ3EuAJgApgaoPdivQntt63wjc9m88UjfvPpE9_6mIIvu9QPntqm9o01AU9_km2ib5uITVPhFxNMXdsaF82mSxG7NuB56xKeb6nm4xQdOVNHe7avQ_R6N11MHrLZ830xuZ5lS5rzlNnSUmGck8pUnDgDFhjLXUkkNaBKIoylwEWpSmnk2AirxqQyVFSVlKXhORuiy93e_pOvzsakV20Xmv6kpopJoGNBaE_BjlqGNsZgnd4EvzbhVxPQW4W6V6i3CvVeYR-52EW8tfYfTrnMBWV_zBVtDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938026712</pqid></control><display><type>article</type><title>Improved Bi-LSTM With Distributed Nonlinear Extensions and Parallel Inputs for Soft Sensing</title><source>IEEE Electronic Library (IEL)</source><creator>He, Yan-Lin ; Wang, Peng-Fei ; Zhu, Qun-Xiong</creator><creatorcontrib>He, Yan-Lin ; Wang, Peng-Fei ; Zhu, Qun-Xiong</creatorcontrib><description>Industrial soft sensing models have found extensive application in predicting key process variables that are challenging to directly measure. However, the effectiveness of conventional soft sensing models is impacted by the intricate characteristics of process variables, such as high nonlinearity, coupling, and complex dynamicity. To address this limitation, an enhanced bidirectional long short-term memory (Bi-LSTM) model based on distributed nonlinear extensions integrated with parallel inputs (DNEPI-Bi-LSTM) is proposed for constructing the soft sensing model. First, to account for the differential impact between inputs and outputs, partial correlation is employed to segregate the inputs into two categories: positive subinputs and negative subinputs. Subsequently, these two distributed subinputs are transformed into nonlinear space by passing through the hidden layer of the extreme learning machine. The resulting outputs from the hidden layer are considered as distributed nonlinear extensions. Finally, the enhanced DNEPI-Bi-LSTM soft sensing model is developed using parallel inputs integrated with distributed nonlinear extensions. To assess the efficacy of DNEPI-Bi-LSTM, an industrial process known as the sulfur recovery unit is adopted. Simulation results illustrate that DNEPI-Bi-LSTM outperforms other advanced models in terms of accuracy, showcasing its potential in industrial applications.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2023.3313631</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Bidirectional long short-term memory (Bi-LSTM) ; Correlation ; distributed inputs ; Extreme values ; Industrial applications ; industrial processes ; industrial soft sensing ; Logic gates ; Long short term memory ; Machine learning ; nonlinear extensions ; Nonlinearity ; Predictive models ; Process control ; Process variables ; Soft sensors ; Temperature measurement</subject><ispartof>IEEE transactions on industrial informatics, 2024-03, Vol.20 (3), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-ebe27aff89ad51fa0e0334fb182a09b17ae2057b9b8a86a7e961da27dd88ba543</cites><orcidid>0009-0004-6654-1528 ; 0000-0002-2719-0516 ; 0000-0001-9999-3679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10258472$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10258472$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Yan-Lin</creatorcontrib><creatorcontrib>Wang, Peng-Fei</creatorcontrib><creatorcontrib>Zhu, Qun-Xiong</creatorcontrib><title>Improved Bi-LSTM With Distributed Nonlinear Extensions and Parallel Inputs for Soft Sensing</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Industrial soft sensing models have found extensive application in predicting key process variables that are challenging to directly measure. However, the effectiveness of conventional soft sensing models is impacted by the intricate characteristics of process variables, such as high nonlinearity, coupling, and complex dynamicity. To address this limitation, an enhanced bidirectional long short-term memory (Bi-LSTM) model based on distributed nonlinear extensions integrated with parallel inputs (DNEPI-Bi-LSTM) is proposed for constructing the soft sensing model. First, to account for the differential impact between inputs and outputs, partial correlation is employed to segregate the inputs into two categories: positive subinputs and negative subinputs. Subsequently, these two distributed subinputs are transformed into nonlinear space by passing through the hidden layer of the extreme learning machine. The resulting outputs from the hidden layer are considered as distributed nonlinear extensions. Finally, the enhanced DNEPI-Bi-LSTM soft sensing model is developed using parallel inputs integrated with distributed nonlinear extensions. To assess the efficacy of DNEPI-Bi-LSTM, an industrial process known as the sulfur recovery unit is adopted. Simulation results illustrate that DNEPI-Bi-LSTM outperforms other advanced models in terms of accuracy, showcasing its potential in industrial applications.</description><subject>Artificial neural networks</subject><subject>Bidirectional long short-term memory (Bi-LSTM)</subject><subject>Correlation</subject><subject>distributed inputs</subject><subject>Extreme values</subject><subject>Industrial applications</subject><subject>industrial processes</subject><subject>industrial soft sensing</subject><subject>Logic gates</subject><subject>Long short term memory</subject><subject>Machine learning</subject><subject>nonlinear extensions</subject><subject>Nonlinearity</subject><subject>Predictive models</subject><subject>Process control</subject><subject>Process variables</subject><subject>Soft sensors</subject><subject>Temperature measurement</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk4523Ftj1AKRCofUosYGCynscFVmhTbQfDvSdUOTHfSPe-d7kHonMCIEFBXi6IYUaBsxBhhY0YO0IConGQAHA77nnOSMQrsGJ3EuAJgApgaoPdivQntt63wjc9m88UjfvPpE9_6mIIvu9QPntqm9o01AU9_km2ib5uITVPhFxNMXdsaF82mSxG7NuB56xKeb6nm4xQdOVNHe7avQ_R6N11MHrLZ830xuZ5lS5rzlNnSUmGck8pUnDgDFhjLXUkkNaBKIoylwEWpSmnk2AirxqQyVFSVlKXhORuiy93e_pOvzsakV20Xmv6kpopJoGNBaE_BjlqGNsZgnd4EvzbhVxPQW4W6V6i3CvVeYR-52EW8tfYfTrnMBWV_zBVtDw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>He, Yan-Lin</creator><creator>Wang, Peng-Fei</creator><creator>Zhu, Qun-Xiong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0004-6654-1528</orcidid><orcidid>https://orcid.org/0000-0002-2719-0516</orcidid><orcidid>https://orcid.org/0000-0001-9999-3679</orcidid></search><sort><creationdate>20240301</creationdate><title>Improved Bi-LSTM With Distributed Nonlinear Extensions and Parallel Inputs for Soft Sensing</title><author>He, Yan-Lin ; Wang, Peng-Fei ; Zhu, Qun-Xiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-ebe27aff89ad51fa0e0334fb182a09b17ae2057b9b8a86a7e961da27dd88ba543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Bidirectional long short-term memory (Bi-LSTM)</topic><topic>Correlation</topic><topic>distributed inputs</topic><topic>Extreme values</topic><topic>Industrial applications</topic><topic>industrial processes</topic><topic>industrial soft sensing</topic><topic>Logic gates</topic><topic>Long short term memory</topic><topic>Machine learning</topic><topic>nonlinear extensions</topic><topic>Nonlinearity</topic><topic>Predictive models</topic><topic>Process control</topic><topic>Process variables</topic><topic>Soft sensors</topic><topic>Temperature measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Yan-Lin</creatorcontrib><creatorcontrib>Wang, Peng-Fei</creatorcontrib><creatorcontrib>Zhu, Qun-Xiong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Yan-Lin</au><au>Wang, Peng-Fei</au><au>Zhu, Qun-Xiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Bi-LSTM With Distributed Nonlinear Extensions and Parallel Inputs for Soft Sensing</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>20</volume><issue>3</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Industrial soft sensing models have found extensive application in predicting key process variables that are challenging to directly measure. However, the effectiveness of conventional soft sensing models is impacted by the intricate characteristics of process variables, such as high nonlinearity, coupling, and complex dynamicity. To address this limitation, an enhanced bidirectional long short-term memory (Bi-LSTM) model based on distributed nonlinear extensions integrated with parallel inputs (DNEPI-Bi-LSTM) is proposed for constructing the soft sensing model. First, to account for the differential impact between inputs and outputs, partial correlation is employed to segregate the inputs into two categories: positive subinputs and negative subinputs. Subsequently, these two distributed subinputs are transformed into nonlinear space by passing through the hidden layer of the extreme learning machine. The resulting outputs from the hidden layer are considered as distributed nonlinear extensions. Finally, the enhanced DNEPI-Bi-LSTM soft sensing model is developed using parallel inputs integrated with distributed nonlinear extensions. To assess the efficacy of DNEPI-Bi-LSTM, an industrial process known as the sulfur recovery unit is adopted. Simulation results illustrate that DNEPI-Bi-LSTM outperforms other advanced models in terms of accuracy, showcasing its potential in industrial applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2023.3313631</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0004-6654-1528</orcidid><orcidid>https://orcid.org/0000-0002-2719-0516</orcidid><orcidid>https://orcid.org/0000-0001-9999-3679</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2024-03, Vol.20 (3), p.1-8
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2938026712
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Bidirectional long short-term memory (Bi-LSTM)
Correlation
distributed inputs
Extreme values
Industrial applications
industrial processes
industrial soft sensing
Logic gates
Long short term memory
Machine learning
nonlinear extensions
Nonlinearity
Predictive models
Process control
Process variables
Soft sensors
Temperature measurement
title Improved Bi-LSTM With Distributed Nonlinear Extensions and Parallel Inputs for Soft Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Bi-LSTM%20With%20Distributed%20Nonlinear%20Extensions%20and%20Parallel%20Inputs%20for%20Soft%20Sensing&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=He,%20Yan-Lin&rft.date=2024-03-01&rft.volume=20&rft.issue=3&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2023.3313631&rft_dat=%3Cproquest_RIE%3E2938026712%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938026712&rft_id=info:pmid/&rft_ieee_id=10258472&rfr_iscdi=true