Real-Time Spatiotemporal Assistance for Micromanipulation Using Imitation Learning

There has been an increasing demand for microscopic work using optical microscopes and micromanipulators for applications in various fields. However, microinjection requires skilled operators, and the considerable shortage of experts has become a recent challenge. We overcome this challenge by propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2024-04, Vol.9 (4), p.1-8
Hauptverfasser: Mori, Ryoya, Aoyama, Tadayoshi, Kobayashi, Taisuke, Sakamoto, Kazuya, Takeuchi, Masaru, Hasegawa, Yasuhisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 4
container_start_page 1
container_title IEEE robotics and automation letters
container_volume 9
creator Mori, Ryoya
Aoyama, Tadayoshi
Kobayashi, Taisuke
Sakamoto, Kazuya
Takeuchi, Masaru
Hasegawa, Yasuhisa
description There has been an increasing demand for microscopic work using optical microscopes and micromanipulators for applications in various fields. However, microinjection requires skilled operators, and the considerable shortage of experts has become a recent challenge. We overcome this challenge by proposing an assistance system based on force and visual presentation using artificial intelligence technology to simplify cell rotation manipulation, which is difficult in microinjection. The proposed system employs imitation learning for an expert with a Gaussian mixture model (GMM) to obtain the ideal pipette trajectory and long short-term memory (LSTM) to infer the pipette operation at the next time step. The assistance position is calculated from the spatial component with GMM and the time-series component with LSTM. We conducted a participant experiment using mature porcine oocytes as targets for manipulation to evaluate the effectiveness of the proposed system. The results indicated that, compared to the conventional system, the proposed system reduced the pipette operation time for single-oocyte rotation and the cell damage caused by the pipette-oocyte collision by approximately 27.0 % and 82.0 %, respectively. Therefore, the proposed system is expected to enable beginners to reproduce high-level skills and address the shortage of experts.
doi_str_mv 10.1109/LRA.2024.3366011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2938023702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10436348</ieee_id><sourcerecordid>2938023702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-750c05888228cf22e4cfe1050a31a3ca24b1e8ec8eaff51baa892e128a2758323</originalsourceid><addsrcrecordid>eNpNkElrwzAQhUVpoSHNvYceDD07HY28KMcQugRcCmlyFhMxLgreKjmH_vvaOIecZuF7szwhHiUspYTVS7FbLxEwWSqVZSDljZihyvNY5Vl2e5Xfi0UIJwCQKeZqlc7EbsdUxXtXc_TdUe_anuuu9VRF6xBc6KmxHJWtjz6d9W1NjevO1cg10SG45ifa1q6f6oLJN0PrQdyVVAVeXOJcHN5e95uPuPh6327WRWxR532cp2Ah1VojalsicmJLlpACKUnKEiZHyZqtZirLVB6J9ApZoibMU61QzcXzNLfz7e-ZQ29O7dk3w0qDK6Vh-BpGCiZqOD8Ez6XpvKvJ_xkJZjTPDOaZ0TxzMW-QPE0Sx8xXeKIylWj1Dx6Eatk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938023702</pqid></control><display><type>article</type><title>Real-Time Spatiotemporal Assistance for Micromanipulation Using Imitation Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Mori, Ryoya ; Aoyama, Tadayoshi ; Kobayashi, Taisuke ; Sakamoto, Kazuya ; Takeuchi, Masaru ; Hasegawa, Yasuhisa</creator><creatorcontrib>Mori, Ryoya ; Aoyama, Tadayoshi ; Kobayashi, Taisuke ; Sakamoto, Kazuya ; Takeuchi, Masaru ; Hasegawa, Yasuhisa</creatorcontrib><description>There has been an increasing demand for microscopic work using optical microscopes and micromanipulators for applications in various fields. However, microinjection requires skilled operators, and the considerable shortage of experts has become a recent challenge. We overcome this challenge by proposing an assistance system based on force and visual presentation using artificial intelligence technology to simplify cell rotation manipulation, which is difficult in microinjection. The proposed system employs imitation learning for an expert with a Gaussian mixture model (GMM) to obtain the ideal pipette trajectory and long short-term memory (LSTM) to infer the pipette operation at the next time step. The assistance position is calculated from the spatial component with GMM and the time-series component with LSTM. We conducted a participant experiment using mature porcine oocytes as targets for manipulation to evaluate the effectiveness of the proposed system. The results indicated that, compared to the conventional system, the proposed system reduced the pipette operation time for single-oocyte rotation and the cell damage caused by the pipette-oocyte collision by approximately 27.0 % and 82.0 %, respectively. Therefore, the proposed system is expected to enable beginners to reproduce high-level skills and address the shortage of experts.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3366011</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>AI-Based Methods ; Artificial intelligence ; Biological Cell Manipulation ; Data models ; Force ; Gametocytes ; Haptic interfaces ; Human-Centered Robotics ; Imitation Learning ; Learning ; Micromanipulation ; Microscopy ; Optical microscopes ; Probabilistic models ; Rotation ; Shortages ; Spatiotemporal phenomena ; Trajectory ; Visualization</subject><ispartof>IEEE robotics and automation letters, 2024-04, Vol.9 (4), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-750c05888228cf22e4cfe1050a31a3ca24b1e8ec8eaff51baa892e128a2758323</cites><orcidid>0000-0001-9917-098X ; 0000-0001-9304-4667 ; 0000-0002-3760-249X ; 0000-0001-7860-0725 ; 0009-0008-0783-7061 ; 0009-0003-1090-1873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10436348$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Mori, Ryoya</creatorcontrib><creatorcontrib>Aoyama, Tadayoshi</creatorcontrib><creatorcontrib>Kobayashi, Taisuke</creatorcontrib><creatorcontrib>Sakamoto, Kazuya</creatorcontrib><creatorcontrib>Takeuchi, Masaru</creatorcontrib><creatorcontrib>Hasegawa, Yasuhisa</creatorcontrib><title>Real-Time Spatiotemporal Assistance for Micromanipulation Using Imitation Learning</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>There has been an increasing demand for microscopic work using optical microscopes and micromanipulators for applications in various fields. However, microinjection requires skilled operators, and the considerable shortage of experts has become a recent challenge. We overcome this challenge by proposing an assistance system based on force and visual presentation using artificial intelligence technology to simplify cell rotation manipulation, which is difficult in microinjection. The proposed system employs imitation learning for an expert with a Gaussian mixture model (GMM) to obtain the ideal pipette trajectory and long short-term memory (LSTM) to infer the pipette operation at the next time step. The assistance position is calculated from the spatial component with GMM and the time-series component with LSTM. We conducted a participant experiment using mature porcine oocytes as targets for manipulation to evaluate the effectiveness of the proposed system. The results indicated that, compared to the conventional system, the proposed system reduced the pipette operation time for single-oocyte rotation and the cell damage caused by the pipette-oocyte collision by approximately 27.0 % and 82.0 %, respectively. Therefore, the proposed system is expected to enable beginners to reproduce high-level skills and address the shortage of experts.</description><subject>AI-Based Methods</subject><subject>Artificial intelligence</subject><subject>Biological Cell Manipulation</subject><subject>Data models</subject><subject>Force</subject><subject>Gametocytes</subject><subject>Haptic interfaces</subject><subject>Human-Centered Robotics</subject><subject>Imitation Learning</subject><subject>Learning</subject><subject>Micromanipulation</subject><subject>Microscopy</subject><subject>Optical microscopes</subject><subject>Probabilistic models</subject><subject>Rotation</subject><subject>Shortages</subject><subject>Spatiotemporal phenomena</subject><subject>Trajectory</subject><subject>Visualization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkElrwzAQhUVpoSHNvYceDD07HY28KMcQugRcCmlyFhMxLgreKjmH_vvaOIecZuF7szwhHiUspYTVS7FbLxEwWSqVZSDljZihyvNY5Vl2e5Xfi0UIJwCQKeZqlc7EbsdUxXtXc_TdUe_anuuu9VRF6xBc6KmxHJWtjz6d9W1NjevO1cg10SG45ifa1q6f6oLJN0PrQdyVVAVeXOJcHN5e95uPuPh6327WRWxR532cp2Ah1VojalsicmJLlpACKUnKEiZHyZqtZirLVB6J9ApZoibMU61QzcXzNLfz7e-ZQ29O7dk3w0qDK6Vh-BpGCiZqOD8Ez6XpvKvJ_xkJZjTPDOaZ0TxzMW-QPE0Sx8xXeKIylWj1Dx6Eatk</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Mori, Ryoya</creator><creator>Aoyama, Tadayoshi</creator><creator>Kobayashi, Taisuke</creator><creator>Sakamoto, Kazuya</creator><creator>Takeuchi, Masaru</creator><creator>Hasegawa, Yasuhisa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9917-098X</orcidid><orcidid>https://orcid.org/0000-0001-9304-4667</orcidid><orcidid>https://orcid.org/0000-0002-3760-249X</orcidid><orcidid>https://orcid.org/0000-0001-7860-0725</orcidid><orcidid>https://orcid.org/0009-0008-0783-7061</orcidid><orcidid>https://orcid.org/0009-0003-1090-1873</orcidid></search><sort><creationdate>20240401</creationdate><title>Real-Time Spatiotemporal Assistance for Micromanipulation Using Imitation Learning</title><author>Mori, Ryoya ; Aoyama, Tadayoshi ; Kobayashi, Taisuke ; Sakamoto, Kazuya ; Takeuchi, Masaru ; Hasegawa, Yasuhisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-750c05888228cf22e4cfe1050a31a3ca24b1e8ec8eaff51baa892e128a2758323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AI-Based Methods</topic><topic>Artificial intelligence</topic><topic>Biological Cell Manipulation</topic><topic>Data models</topic><topic>Force</topic><topic>Gametocytes</topic><topic>Haptic interfaces</topic><topic>Human-Centered Robotics</topic><topic>Imitation Learning</topic><topic>Learning</topic><topic>Micromanipulation</topic><topic>Microscopy</topic><topic>Optical microscopes</topic><topic>Probabilistic models</topic><topic>Rotation</topic><topic>Shortages</topic><topic>Spatiotemporal phenomena</topic><topic>Trajectory</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mori, Ryoya</creatorcontrib><creatorcontrib>Aoyama, Tadayoshi</creatorcontrib><creatorcontrib>Kobayashi, Taisuke</creatorcontrib><creatorcontrib>Sakamoto, Kazuya</creatorcontrib><creatorcontrib>Takeuchi, Masaru</creatorcontrib><creatorcontrib>Hasegawa, Yasuhisa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mori, Ryoya</au><au>Aoyama, Tadayoshi</au><au>Kobayashi, Taisuke</au><au>Sakamoto, Kazuya</au><au>Takeuchi, Masaru</au><au>Hasegawa, Yasuhisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Spatiotemporal Assistance for Micromanipulation Using Imitation Learning</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>9</volume><issue>4</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>There has been an increasing demand for microscopic work using optical microscopes and micromanipulators for applications in various fields. However, microinjection requires skilled operators, and the considerable shortage of experts has become a recent challenge. We overcome this challenge by proposing an assistance system based on force and visual presentation using artificial intelligence technology to simplify cell rotation manipulation, which is difficult in microinjection. The proposed system employs imitation learning for an expert with a Gaussian mixture model (GMM) to obtain the ideal pipette trajectory and long short-term memory (LSTM) to infer the pipette operation at the next time step. The assistance position is calculated from the spatial component with GMM and the time-series component with LSTM. We conducted a participant experiment using mature porcine oocytes as targets for manipulation to evaluate the effectiveness of the proposed system. The results indicated that, compared to the conventional system, the proposed system reduced the pipette operation time for single-oocyte rotation and the cell damage caused by the pipette-oocyte collision by approximately 27.0 % and 82.0 %, respectively. Therefore, the proposed system is expected to enable beginners to reproduce high-level skills and address the shortage of experts.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3366011</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9917-098X</orcidid><orcidid>https://orcid.org/0000-0001-9304-4667</orcidid><orcidid>https://orcid.org/0000-0002-3760-249X</orcidid><orcidid>https://orcid.org/0000-0001-7860-0725</orcidid><orcidid>https://orcid.org/0009-0008-0783-7061</orcidid><orcidid>https://orcid.org/0009-0003-1090-1873</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2024-04, Vol.9 (4), p.1-8
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2938023702
source IEEE Electronic Library (IEL)
subjects AI-Based Methods
Artificial intelligence
Biological Cell Manipulation
Data models
Force
Gametocytes
Haptic interfaces
Human-Centered Robotics
Imitation Learning
Learning
Micromanipulation
Microscopy
Optical microscopes
Probabilistic models
Rotation
Shortages
Spatiotemporal phenomena
Trajectory
Visualization
title Real-Time Spatiotemporal Assistance for Micromanipulation Using Imitation Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Spatiotemporal%20Assistance%20for%20Micromanipulation%20Using%20Imitation%20Learning&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Mori,%20Ryoya&rft.date=2024-04-01&rft.volume=9&rft.issue=4&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3366011&rft_dat=%3Cproquest_cross%3E2938023702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938023702&rft_id=info:pmid/&rft_ieee_id=10436348&rfr_iscdi=true