Internal Stress in High-Strength CuAg Conductor

Resistive magnets with ultrahigh magnetic fields require composite conductors (almost all based on Cu) with optimized combinations of mechanical strength and electrical conductivity. In the fabrication of these conductors, the lower the melting point of the alloys, the easier they are to cast. Among...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2024-08, Vol.34 (5), p.1-5
Hauptverfasser: Han, K., Toplosky, V. J., Niu, R. M., Lu, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 34
creator Han, K.
Toplosky, V. J.
Niu, R. M.
Lu, J.
description Resistive magnets with ultrahigh magnetic fields require composite conductors (almost all based on Cu) with optimized combinations of mechanical strength and electrical conductivity. In the fabrication of these conductors, the lower the melting point of the alloys, the easier they are to cast. Among conductors with melting points below the melting point of Cu, those of Cu-Ag achieve the highest mechanical strength. During cold-rolling, which is the final step for making these Cu-Ag conductors, small Ag precipitates elongate into a high density of fine Ag fibers, thus producing the high strength of the material. In this study, ultimate tensile strength values reached >850 MPa when composites were rolled to a reduction-in-thickness of >97% and spacing between fibers was reduced to less than 50 nm, generating high internal stresses. In these composites, the ratio of ultimate strength in the transverse direction to that in the longitudinal direction was about 1.13, indicating anisotropy. We speculate that such anisotropy in mechanical strength may lead to an internal-stress anisotropy at macroscale that could later complicate the manufacture of Bitter plates. In order to optimize the manufacturing process, we quantified the relationship between internal stress and strength anisotropy in Cu-24wt% Ag.
doi_str_mv 10.1109/TASC.2024.3368396
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2938023635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10453232</ieee_id><sourcerecordid>2938023635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-16289acc899a92453075f0250e2f78a36892a119cf1d06c24fc6adb2a7dc327b3</originalsourceid><addsrcrecordid>eNpNkDFrwzAQhUVpoWnaH1DoYOhsR3eyZGkMpm0CgQ5JZ6HIcuKQ2qlkD_33lXGGcsPdg_eOx0fIM9AMgKrFbrktM6SYZ4wJyZS4ITPgXKbIgd_Gm3JIJSK7Jw8hnCiFXOZ8Rhbrtne-Nedk23sXQtK0yao5HNNRtof-mJTD8pCUXVsNtu_8I7mrzTm4p-uek6_3t125SjefH-tyuUkt5qJPQaBUxlqplFGYc0YLXlPk1GFdSBMrKjQAytZQUREztRWm2qMpKsuw2LM5eZ3-Xnz3M7jQ61M3jD2DRsUkRSYYjy6YXNZ3IXhX64tvvo3_1UD1yEWPXPTIRV-5xMzLlGmcc__8sSTG-QNQd1xy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938023635</pqid></control><display><type>article</type><title>Internal Stress in High-Strength CuAg Conductor</title><source>IEEE Electronic Library (IEL)</source><creator>Han, K. ; Toplosky, V. J. ; Niu, R. M. ; Lu, J.</creator><creatorcontrib>Han, K. ; Toplosky, V. J. ; Niu, R. M. ; Lu, J.</creatorcontrib><description>Resistive magnets with ultrahigh magnetic fields require composite conductors (almost all based on Cu) with optimized combinations of mechanical strength and electrical conductivity. In the fabrication of these conductors, the lower the melting point of the alloys, the easier they are to cast. Among conductors with melting points below the melting point of Cu, those of Cu-Ag achieve the highest mechanical strength. During cold-rolling, which is the final step for making these Cu-Ag conductors, small Ag precipitates elongate into a high density of fine Ag fibers, thus producing the high strength of the material. In this study, ultimate tensile strength values reached &gt;850 MPa when composites were rolled to a reduction-in-thickness of &gt;97% and spacing between fibers was reduced to less than 50 nm, generating high internal stresses. In these composites, the ratio of ultimate strength in the transverse direction to that in the longitudinal direction was about 1.13, indicating anisotropy. We speculate that such anisotropy in mechanical strength may lead to an internal-stress anisotropy at macroscale that could later complicate the manufacture of Bitter plates. In order to optimize the manufacturing process, we quantified the relationship between internal stress and strength anisotropy in Cu-24wt% Ag.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3368396</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anisotropic magnetoresistance ; Anisotropic properties ; Anisotropy ; Cold rolling ; Composite materials ; Conductors ; Copper ; Distortion ; Electrical resistivity ; High strength ; high-strength conductor ; internal stress ; Internal stresses ; Magnets ; mechanical strength ; Melting points ; Precipitates ; Residual stress ; resistive magnet ; Silver ; Strain ; Strain measurement ; Ultimate tensile strength</subject><ispartof>IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-16289acc899a92453075f0250e2f78a36892a119cf1d06c24fc6adb2a7dc327b3</cites><orcidid>0000-0001-8521-489X ; 0000-0001-9225-0733 ; 0000-0002-2988-8854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10453232$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10453232$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, K.</creatorcontrib><creatorcontrib>Toplosky, V. J.</creatorcontrib><creatorcontrib>Niu, R. M.</creatorcontrib><creatorcontrib>Lu, J.</creatorcontrib><title>Internal Stress in High-Strength CuAg Conductor</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Resistive magnets with ultrahigh magnetic fields require composite conductors (almost all based on Cu) with optimized combinations of mechanical strength and electrical conductivity. In the fabrication of these conductors, the lower the melting point of the alloys, the easier they are to cast. Among conductors with melting points below the melting point of Cu, those of Cu-Ag achieve the highest mechanical strength. During cold-rolling, which is the final step for making these Cu-Ag conductors, small Ag precipitates elongate into a high density of fine Ag fibers, thus producing the high strength of the material. In this study, ultimate tensile strength values reached &gt;850 MPa when composites were rolled to a reduction-in-thickness of &gt;97% and spacing between fibers was reduced to less than 50 nm, generating high internal stresses. In these composites, the ratio of ultimate strength in the transverse direction to that in the longitudinal direction was about 1.13, indicating anisotropy. We speculate that such anisotropy in mechanical strength may lead to an internal-stress anisotropy at macroscale that could later complicate the manufacture of Bitter plates. In order to optimize the manufacturing process, we quantified the relationship between internal stress and strength anisotropy in Cu-24wt% Ag.</description><subject>Anisotropic magnetoresistance</subject><subject>Anisotropic properties</subject><subject>Anisotropy</subject><subject>Cold rolling</subject><subject>Composite materials</subject><subject>Conductors</subject><subject>Copper</subject><subject>Distortion</subject><subject>Electrical resistivity</subject><subject>High strength</subject><subject>high-strength conductor</subject><subject>internal stress</subject><subject>Internal stresses</subject><subject>Magnets</subject><subject>mechanical strength</subject><subject>Melting points</subject><subject>Precipitates</subject><subject>Residual stress</subject><subject>resistive magnet</subject><subject>Silver</subject><subject>Strain</subject><subject>Strain measurement</subject><subject>Ultimate tensile strength</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFrwzAQhUVpoWnaH1DoYOhsR3eyZGkMpm0CgQ5JZ6HIcuKQ2qlkD_33lXGGcsPdg_eOx0fIM9AMgKrFbrktM6SYZ4wJyZS4ITPgXKbIgd_Gm3JIJSK7Jw8hnCiFXOZ8Rhbrtne-Nedk23sXQtK0yao5HNNRtof-mJTD8pCUXVsNtu_8I7mrzTm4p-uek6_3t125SjefH-tyuUkt5qJPQaBUxlqplFGYc0YLXlPk1GFdSBMrKjQAytZQUREztRWm2qMpKsuw2LM5eZ3-Xnz3M7jQ61M3jD2DRsUkRSYYjy6YXNZ3IXhX64tvvo3_1UD1yEWPXPTIRV-5xMzLlGmcc__8sSTG-QNQd1xy</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Han, K.</creator><creator>Toplosky, V. J.</creator><creator>Niu, R. M.</creator><creator>Lu, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8521-489X</orcidid><orcidid>https://orcid.org/0000-0001-9225-0733</orcidid><orcidid>https://orcid.org/0000-0002-2988-8854</orcidid></search><sort><creationdate>20240801</creationdate><title>Internal Stress in High-Strength CuAg Conductor</title><author>Han, K. ; Toplosky, V. J. ; Niu, R. M. ; Lu, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-16289acc899a92453075f0250e2f78a36892a119cf1d06c24fc6adb2a7dc327b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Anisotropic properties</topic><topic>Anisotropy</topic><topic>Cold rolling</topic><topic>Composite materials</topic><topic>Conductors</topic><topic>Copper</topic><topic>Distortion</topic><topic>Electrical resistivity</topic><topic>High strength</topic><topic>high-strength conductor</topic><topic>internal stress</topic><topic>Internal stresses</topic><topic>Magnets</topic><topic>mechanical strength</topic><topic>Melting points</topic><topic>Precipitates</topic><topic>Residual stress</topic><topic>resistive magnet</topic><topic>Silver</topic><topic>Strain</topic><topic>Strain measurement</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, K.</creatorcontrib><creatorcontrib>Toplosky, V. J.</creatorcontrib><creatorcontrib>Niu, R. M.</creatorcontrib><creatorcontrib>Lu, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, K.</au><au>Toplosky, V. J.</au><au>Niu, R. M.</au><au>Lu, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal Stress in High-Strength CuAg Conductor</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Resistive magnets with ultrahigh magnetic fields require composite conductors (almost all based on Cu) with optimized combinations of mechanical strength and electrical conductivity. In the fabrication of these conductors, the lower the melting point of the alloys, the easier they are to cast. Among conductors with melting points below the melting point of Cu, those of Cu-Ag achieve the highest mechanical strength. During cold-rolling, which is the final step for making these Cu-Ag conductors, small Ag precipitates elongate into a high density of fine Ag fibers, thus producing the high strength of the material. In this study, ultimate tensile strength values reached &gt;850 MPa when composites were rolled to a reduction-in-thickness of &gt;97% and spacing between fibers was reduced to less than 50 nm, generating high internal stresses. In these composites, the ratio of ultimate strength in the transverse direction to that in the longitudinal direction was about 1.13, indicating anisotropy. We speculate that such anisotropy in mechanical strength may lead to an internal-stress anisotropy at macroscale that could later complicate the manufacture of Bitter plates. In order to optimize the manufacturing process, we quantified the relationship between internal stress and strength anisotropy in Cu-24wt% Ag.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3368396</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8521-489X</orcidid><orcidid>https://orcid.org/0000-0001-9225-0733</orcidid><orcidid>https://orcid.org/0000-0002-2988-8854</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_2938023635
source IEEE Electronic Library (IEL)
subjects Anisotropic magnetoresistance
Anisotropic properties
Anisotropy
Cold rolling
Composite materials
Conductors
Copper
Distortion
Electrical resistivity
High strength
high-strength conductor
internal stress
Internal stresses
Magnets
mechanical strength
Melting points
Precipitates
Residual stress
resistive magnet
Silver
Strain
Strain measurement
Ultimate tensile strength
title Internal Stress in High-Strength CuAg Conductor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A28%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20Stress%20in%20High-Strength%20CuAg%20Conductor&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Han,%20K.&rft.date=2024-08-01&rft.volume=34&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3368396&rft_dat=%3Cproquest_RIE%3E2938023635%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938023635&rft_id=info:pmid/&rft_ieee_id=10453232&rfr_iscdi=true