Explicit Change-Relation Learning for Change Detection in VHR Remote Sensing Images
Change detection is a concerned task in the interpretation of remote sensing images. The mining of the relationship on change features is usually implicit in the deep learning networks that contain single-branch or two-branch encoders. However, due to the lack of artificial prior design for the rela...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 21 |
creator | Zheng, Dalong Wu, Zebin Liu, Jia Xu, Yang Hung, Chih-Cheng Wei, Zhihui |
description | Change detection is a concerned task in the interpretation of remote sensing images. The mining of the relationship on change features is usually implicit in the deep learning networks that contain single-branch or two-branch encoders. However, due to the lack of artificial prior design for the relationship on change features, these networks cannot learn enough semantic information on change features and lead to the poor performance. So, we propose a new network architecture explicit change-relation network (ECRNet) for the explicit mining of change-relation features. In our study of the literature, our suggestion is that the change features for change detection should be divided into prechanged image features, postchanged image features, and change-relation features. In order to fully mining these three kinds of change features, we propose the triple branch network combining the transformer and convolutional neural network (CNN) to extract and fuse these change features from two perspectives of global information and local information, respectively. In addition, we design the continuous change-relation (CCR) branch to further obtain the continuous and detailed change-relation features to improve the change discrimination capability of the model. The experimental results show that our network performs better than those of the existing advanced networks by the F1 score improvements of 0.66/0.37/0.70/1.09 on the very high-resolution (VHR) remote sensing datasets of the LEVIR-CD/SVCD/WHU-CD/SYSU-CD. Our source code is available at https://github.com/DalongZ/ECRNet . |
doi_str_mv | 10.1109/LGRS.2024.3366981 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2938023609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10439252</ieee_id><sourcerecordid>2938023609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-a76dc37055c4123fd2527e144c5e5c9e24723665987b3dbc3a1c855a8645fec93</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKsfQPAQ8Lw1fzfJUWptCwvCVsVbSNPZmtLu1mQL-u3dtT14moH5vZk3D6FbSkaUEvNQTMvFiBEmRpznudH0DA2olDojUtHzvhcyk0Z_XKKrlDakI7VWA7SYfO-3wYcWjz9dvYashK1rQ1PjAlysQ73GVRNPQ_wELfi_aajx-6zEJeyaFvAC6tSj851bQ7pGF5XbJrg51SF6e568jmdZ8TKdjx-LzDMj2sypfOW5IlJ6QRmvVkwyBVQIL0F6A0wo1v3SmVZLvlp67qjXUjqdC1mBN3yI7o9797H5OkBq7aY5xLo7aZnhmnRq0lP0SPnYpBShsvsYdi7-WEpsn53ts7N9dvaUXae5O2oCAPzjBTedSf4LA2xpfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938023609</pqid></control><display><type>article</type><title>Explicit Change-Relation Learning for Change Detection in VHR Remote Sensing Images</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Dalong ; Wu, Zebin ; Liu, Jia ; Xu, Yang ; Hung, Chih-Cheng ; Wei, Zhihui</creator><creatorcontrib>Zheng, Dalong ; Wu, Zebin ; Liu, Jia ; Xu, Yang ; Hung, Chih-Cheng ; Wei, Zhihui</creatorcontrib><description>Change detection is a concerned task in the interpretation of remote sensing images. The mining of the relationship on change features is usually implicit in the deep learning networks that contain single-branch or two-branch encoders. However, due to the lack of artificial prior design for the relationship on change features, these networks cannot learn enough semantic information on change features and lead to the poor performance. So, we propose a new network architecture explicit change-relation network (ECRNet) for the explicit mining of change-relation features. In our study of the literature, our suggestion is that the change features for change detection should be divided into prechanged image features, postchanged image features, and change-relation features. In order to fully mining these three kinds of change features, we propose the triple branch network combining the transformer and convolutional neural network (CNN) to extract and fuse these change features from two perspectives of global information and local information, respectively. In addition, we design the continuous change-relation (CCR) branch to further obtain the continuous and detailed change-relation features to improve the change discrimination capability of the model. The experimental results show that our network performs better than those of the existing advanced networks by the F1 score improvements of 0.66/0.37/0.70/1.09 on the very high-resolution (VHR) remote sensing datasets of the LEVIR-CD/SVCD/WHU-CD/SYSU-CD. Our source code is available at https://github.com/DalongZ/ECRNet .</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3366981</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Change detection ; change-relation features ; Convolution ; convolutional neural network (CNN) ; Data mining ; Decoding ; Deep learning ; Design ; Detection ; Feature extraction ; Fuses ; Machine learning ; Neural networks ; Remote sensing ; Semantics ; Source code ; transformer ; Transformers</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-a76dc37055c4123fd2527e144c5e5c9e24723665987b3dbc3a1c855a8645fec93</citedby><cites>FETCH-LOGICAL-c294t-a76dc37055c4123fd2527e144c5e5c9e24723665987b3dbc3a1c855a8645fec93</cites><orcidid>0000-0003-4572-4558 ; 0000-0002-7162-0202 ; 0000-0002-5999-2361 ; 0000-0003-3514-9705 ; 0000-0003-0477-5957 ; 0000-0002-4841-6051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10439252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10439252$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Dalong</creatorcontrib><creatorcontrib>Wu, Zebin</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Hung, Chih-Cheng</creatorcontrib><creatorcontrib>Wei, Zhihui</creatorcontrib><title>Explicit Change-Relation Learning for Change Detection in VHR Remote Sensing Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Change detection is a concerned task in the interpretation of remote sensing images. The mining of the relationship on change features is usually implicit in the deep learning networks that contain single-branch or two-branch encoders. However, due to the lack of artificial prior design for the relationship on change features, these networks cannot learn enough semantic information on change features and lead to the poor performance. So, we propose a new network architecture explicit change-relation network (ECRNet) for the explicit mining of change-relation features. In our study of the literature, our suggestion is that the change features for change detection should be divided into prechanged image features, postchanged image features, and change-relation features. In order to fully mining these three kinds of change features, we propose the triple branch network combining the transformer and convolutional neural network (CNN) to extract and fuse these change features from two perspectives of global information and local information, respectively. In addition, we design the continuous change-relation (CCR) branch to further obtain the continuous and detailed change-relation features to improve the change discrimination capability of the model. The experimental results show that our network performs better than those of the existing advanced networks by the F1 score improvements of 0.66/0.37/0.70/1.09 on the very high-resolution (VHR) remote sensing datasets of the LEVIR-CD/SVCD/WHU-CD/SYSU-CD. Our source code is available at https://github.com/DalongZ/ECRNet .</description><subject>Artificial neural networks</subject><subject>Change detection</subject><subject>change-relation features</subject><subject>Convolution</subject><subject>convolutional neural network (CNN)</subject><subject>Data mining</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>Design</subject><subject>Detection</subject><subject>Feature extraction</subject><subject>Fuses</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Remote sensing</subject><subject>Semantics</subject><subject>Source code</subject><subject>transformer</subject><subject>Transformers</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWKsfQPAQ8Lw1fzfJUWptCwvCVsVbSNPZmtLu1mQL-u3dtT14moH5vZk3D6FbSkaUEvNQTMvFiBEmRpznudH0DA2olDojUtHzvhcyk0Z_XKKrlDakI7VWA7SYfO-3wYcWjz9dvYashK1rQ1PjAlysQ73GVRNPQ_wELfi_aajx-6zEJeyaFvAC6tSj851bQ7pGF5XbJrg51SF6e568jmdZ8TKdjx-LzDMj2sypfOW5IlJ6QRmvVkwyBVQIL0F6A0wo1v3SmVZLvlp67qjXUjqdC1mBN3yI7o9797H5OkBq7aY5xLo7aZnhmnRq0lP0SPnYpBShsvsYdi7-WEpsn53ts7N9dvaUXae5O2oCAPzjBTedSf4LA2xpfg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zheng, Dalong</creator><creator>Wu, Zebin</creator><creator>Liu, Jia</creator><creator>Xu, Yang</creator><creator>Hung, Chih-Cheng</creator><creator>Wei, Zhihui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4572-4558</orcidid><orcidid>https://orcid.org/0000-0002-7162-0202</orcidid><orcidid>https://orcid.org/0000-0002-5999-2361</orcidid><orcidid>https://orcid.org/0000-0003-3514-9705</orcidid><orcidid>https://orcid.org/0000-0003-0477-5957</orcidid><orcidid>https://orcid.org/0000-0002-4841-6051</orcidid></search><sort><creationdate>2024</creationdate><title>Explicit Change-Relation Learning for Change Detection in VHR Remote Sensing Images</title><author>Zheng, Dalong ; Wu, Zebin ; Liu, Jia ; Xu, Yang ; Hung, Chih-Cheng ; Wei, Zhihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-a76dc37055c4123fd2527e144c5e5c9e24723665987b3dbc3a1c855a8645fec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Change detection</topic><topic>change-relation features</topic><topic>Convolution</topic><topic>convolutional neural network (CNN)</topic><topic>Data mining</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>Design</topic><topic>Detection</topic><topic>Feature extraction</topic><topic>Fuses</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Remote sensing</topic><topic>Semantics</topic><topic>Source code</topic><topic>transformer</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Dalong</creatorcontrib><creatorcontrib>Wu, Zebin</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Hung, Chih-Cheng</creatorcontrib><creatorcontrib>Wei, Zhihui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Dalong</au><au>Wu, Zebin</au><au>Liu, Jia</au><au>Xu, Yang</au><au>Hung, Chih-Cheng</au><au>Wei, Zhihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit Change-Relation Learning for Change Detection in VHR Remote Sensing Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Change detection is a concerned task in the interpretation of remote sensing images. The mining of the relationship on change features is usually implicit in the deep learning networks that contain single-branch or two-branch encoders. However, due to the lack of artificial prior design for the relationship on change features, these networks cannot learn enough semantic information on change features and lead to the poor performance. So, we propose a new network architecture explicit change-relation network (ECRNet) for the explicit mining of change-relation features. In our study of the literature, our suggestion is that the change features for change detection should be divided into prechanged image features, postchanged image features, and change-relation features. In order to fully mining these three kinds of change features, we propose the triple branch network combining the transformer and convolutional neural network (CNN) to extract and fuse these change features from two perspectives of global information and local information, respectively. In addition, we design the continuous change-relation (CCR) branch to further obtain the continuous and detailed change-relation features to improve the change discrimination capability of the model. The experimental results show that our network performs better than those of the existing advanced networks by the F1 score improvements of 0.66/0.37/0.70/1.09 on the very high-resolution (VHR) remote sensing datasets of the LEVIR-CD/SVCD/WHU-CD/SYSU-CD. Our source code is available at https://github.com/DalongZ/ECRNet .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3366981</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4572-4558</orcidid><orcidid>https://orcid.org/0000-0002-7162-0202</orcidid><orcidid>https://orcid.org/0000-0002-5999-2361</orcidid><orcidid>https://orcid.org/0000-0003-3514-9705</orcidid><orcidid>https://orcid.org/0000-0003-0477-5957</orcidid><orcidid>https://orcid.org/0000-0002-4841-6051</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_2938023609 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Change detection change-relation features Convolution convolutional neural network (CNN) Data mining Decoding Deep learning Design Detection Feature extraction Fuses Machine learning Neural networks Remote sensing Semantics Source code transformer Transformers |
title | Explicit Change-Relation Learning for Change Detection in VHR Remote Sensing Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A23%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20Change-Relation%20Learning%20for%20Change%20Detection%20in%20VHR%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Zheng,%20Dalong&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3366981&rft_dat=%3Cproquest_RIE%3E2938023609%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938023609&rft_id=info:pmid/&rft_ieee_id=10439252&rfr_iscdi=true |