Phytolithic and Paleolandscape Evidences of Environmental Change in the South of the East-European Plain in the Pleistocene
The aim of the study is the reconstruction of paleoclimatic patterns in the formation of the Chumbur-Kosa (MIS-17…MIS-1) loess–soil sequences and the assessment of the possibility of using phytolithic analysis to reconstruct the vegetation cover in the interglacial and glacial periods of the Pleisto...
Gespeichert in:
Veröffentlicht in: | Eurasian soil science 2024, Vol.57 (1), p.74-85 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 1 |
container_start_page | 74 |
container_title | Eurasian soil science |
container_volume | 57 |
creator | Kalinin, P. I. Zanina, O. G. Panin, P. G. Kudrevatykh, I. Yu |
description | The aim of the study is the reconstruction of paleoclimatic patterns in the formation of the Chumbur-Kosa (MIS-17…MIS-1) loess–soil sequences and the assessment of the possibility of using phytolithic analysis to reconstruct the vegetation cover in the interglacial and glacial periods of the Pleistocene. Mean annual precipitation was calculated using the magnetic susceptibility. It has been established that in the Pleistocene there was a directed climate change towards aridization, in which the amount of precipitation during the interglacial periods decreased from 600 to 550 mm/year, and during the glacial periods it did not exceed 200–250 mm/year. Aridization of the climate led to xerophytization of plant communities, a decrease in bioproductivity and landscape diversity. In the warm periods of the Pleistocene, meadow–forb associations prevailed, which were replaced by steppe associations at the onset of the glacial stage. Natural and climatic zones were within the modern boundaries, demonstrating the relative stability of the steppe landscapes to global climatic fluctuations. |
doi_str_mv | 10.1134/S1064229323602494 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2937814181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A785447266</galeid><sourcerecordid>A785447266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-f1a97f4ee0836e3c4cc0848293b4c013613b1bcc8fab9c3d639c617a5f1057f33</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhk1oIWmaH5CbIJdcnGosWZaPYXE_INCFtNCb0WpHsYJX2khyIPTPd5YNFFKKDhppnld6Z6aqLoHfAAj56R64kk3Ti0Yo3shenlRn0Laqhr799Y5iSteH_Gn1IedHzoXWUp9Vv9fTS4mzL5O3zIQtW5sZ40xRtmaPbHj2WwwWM4uODeHZpxh2GIqZ2Woy4QGZD6xMyO7jUqYDdDgMJpd6WFLcowlsPRuCXrn1jD6XaDHgx-q9M3PGi9f9vPr5efix-lrfff_ybXV7V1sheakdmL5zEpFroVBYaS0n71TLRloOQoHYwMZa7cymt2KrRG8VdKZ1wNvOCXFeXR_f3af4tGAu485nizNViXHJo4BWtFqJhhN69QZ9jEsK5G6k_zoNEjQQdXOkHqhZow8ulmQsrS3uvI0Bnaf72063UnaNUiSAo8CmmHNCN-6T35n0MgIfD_Mb_5kfaZqjJhNLjU5_rfxf9Aeb-pwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937814181</pqid></control><display><type>article</type><title>Phytolithic and Paleolandscape Evidences of Environmental Change in the South of the East-European Plain in the Pleistocene</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kalinin, P. I. ; Zanina, O. G. ; Panin, P. G. ; Kudrevatykh, I. Yu</creator><creatorcontrib>Kalinin, P. I. ; Zanina, O. G. ; Panin, P. G. ; Kudrevatykh, I. Yu</creatorcontrib><description>The aim of the study is the reconstruction of paleoclimatic patterns in the formation of the Chumbur-Kosa (MIS-17…MIS-1) loess–soil sequences and the assessment of the possibility of using phytolithic analysis to reconstruct the vegetation cover in the interglacial and glacial periods of the Pleistocene. Mean annual precipitation was calculated using the magnetic susceptibility. It has been established that in the Pleistocene there was a directed climate change towards aridization, in which the amount of precipitation during the interglacial periods decreased from 600 to 550 mm/year, and during the glacial periods it did not exceed 200–250 mm/year. Aridization of the climate led to xerophytization of plant communities, a decrease in bioproductivity and landscape diversity. In the warm periods of the Pleistocene, meadow–forb associations prevailed, which were replaced by steppe associations at the onset of the glacial stage. Natural and climatic zones were within the modern boundaries, demonstrating the relative stability of the steppe landscapes to global climatic fluctuations.</description><identifier>ISSN: 1064-2293</identifier><identifier>EISSN: 1556-195X</identifier><identifier>DOI: 10.1134/S1064229323602494</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Annual precipitation ; atmospheric precipitation ; climate ; Climate change ; Climatic zones ; Earth and Environmental Science ; Earth Sciences ; Environmental changes ; Geotechnical Engineering & Applied Earth Sciences ; Glacial periods ; Global climate ; Global temperature changes ; Ice ages ; Interglacial periods ; landscapes ; Loess ; Magnetic permeability ; Magnetic susceptibility ; paleoclimatology ; Paleopedology ; Plant communities ; Plant cover ; Pleistocene ; Pleistocene epoch ; Precipitation ; soil ; Steppes ; Vegetation cover</subject><ispartof>Eurasian soil science, 2024, Vol.57 (1), p.74-85</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1064-2293, Eurasian Soil Science, 2024, Vol. 57, No. 1, pp. 74–85. © Pleiades Publishing, Ltd., 2024.</rights><rights>COPYRIGHT 2024 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c340t-f1a97f4ee0836e3c4cc0848293b4c013613b1bcc8fab9c3d639c617a5f1057f33</cites><orcidid>0000-0002-7252-2997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064229323602494$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064229323602494$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kalinin, P. I.</creatorcontrib><creatorcontrib>Zanina, O. G.</creatorcontrib><creatorcontrib>Panin, P. G.</creatorcontrib><creatorcontrib>Kudrevatykh, I. Yu</creatorcontrib><title>Phytolithic and Paleolandscape Evidences of Environmental Change in the South of the East-European Plain in the Pleistocene</title><title>Eurasian soil science</title><addtitle>Eurasian Soil Sc</addtitle><description>The aim of the study is the reconstruction of paleoclimatic patterns in the formation of the Chumbur-Kosa (MIS-17…MIS-1) loess–soil sequences and the assessment of the possibility of using phytolithic analysis to reconstruct the vegetation cover in the interglacial and glacial periods of the Pleistocene. Mean annual precipitation was calculated using the magnetic susceptibility. It has been established that in the Pleistocene there was a directed climate change towards aridization, in which the amount of precipitation during the interglacial periods decreased from 600 to 550 mm/year, and during the glacial periods it did not exceed 200–250 mm/year. Aridization of the climate led to xerophytization of plant communities, a decrease in bioproductivity and landscape diversity. In the warm periods of the Pleistocene, meadow–forb associations prevailed, which were replaced by steppe associations at the onset of the glacial stage. Natural and climatic zones were within the modern boundaries, demonstrating the relative stability of the steppe landscapes to global climatic fluctuations.</description><subject>Annual precipitation</subject><subject>atmospheric precipitation</subject><subject>climate</subject><subject>Climate change</subject><subject>Climatic zones</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental changes</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Glacial periods</subject><subject>Global climate</subject><subject>Global temperature changes</subject><subject>Ice ages</subject><subject>Interglacial periods</subject><subject>landscapes</subject><subject>Loess</subject><subject>Magnetic permeability</subject><subject>Magnetic susceptibility</subject><subject>paleoclimatology</subject><subject>Paleopedology</subject><subject>Plant communities</subject><subject>Plant cover</subject><subject>Pleistocene</subject><subject>Pleistocene epoch</subject><subject>Precipitation</subject><subject>soil</subject><subject>Steppes</subject><subject>Vegetation cover</subject><issn>1064-2293</issn><issn>1556-195X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU1r3DAQhk1oIWmaH5CbIJdcnGosWZaPYXE_INCFtNCb0WpHsYJX2khyIPTPd5YNFFKKDhppnld6Z6aqLoHfAAj56R64kk3Ti0Yo3shenlRn0Laqhr799Y5iSteH_Gn1IedHzoXWUp9Vv9fTS4mzL5O3zIQtW5sZ40xRtmaPbHj2WwwWM4uODeHZpxh2GIqZ2Woy4QGZD6xMyO7jUqYDdDgMJpd6WFLcowlsPRuCXrn1jD6XaDHgx-q9M3PGi9f9vPr5efix-lrfff_ybXV7V1sheakdmL5zEpFroVBYaS0n71TLRloOQoHYwMZa7cymt2KrRG8VdKZ1wNvOCXFeXR_f3af4tGAu485nizNViXHJo4BWtFqJhhN69QZ9jEsK5G6k_zoNEjQQdXOkHqhZow8ulmQsrS3uvI0Bnaf72063UnaNUiSAo8CmmHNCN-6T35n0MgIfD_Mb_5kfaZqjJhNLjU5_rfxf9Aeb-pwo</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kalinin, P. I.</creator><creator>Zanina, O. G.</creator><creator>Panin, P. G.</creator><creator>Kudrevatykh, I. Yu</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-7252-2997</orcidid></search><sort><creationdate>2024</creationdate><title>Phytolithic and Paleolandscape Evidences of Environmental Change in the South of the East-European Plain in the Pleistocene</title><author>Kalinin, P. I. ; Zanina, O. G. ; Panin, P. G. ; Kudrevatykh, I. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-f1a97f4ee0836e3c4cc0848293b4c013613b1bcc8fab9c3d639c617a5f1057f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annual precipitation</topic><topic>atmospheric precipitation</topic><topic>climate</topic><topic>Climate change</topic><topic>Climatic zones</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental changes</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Glacial periods</topic><topic>Global climate</topic><topic>Global temperature changes</topic><topic>Ice ages</topic><topic>Interglacial periods</topic><topic>landscapes</topic><topic>Loess</topic><topic>Magnetic permeability</topic><topic>Magnetic susceptibility</topic><topic>paleoclimatology</topic><topic>Paleopedology</topic><topic>Plant communities</topic><topic>Plant cover</topic><topic>Pleistocene</topic><topic>Pleistocene epoch</topic><topic>Precipitation</topic><topic>soil</topic><topic>Steppes</topic><topic>Vegetation cover</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalinin, P. I.</creatorcontrib><creatorcontrib>Zanina, O. G.</creatorcontrib><creatorcontrib>Panin, P. G.</creatorcontrib><creatorcontrib>Kudrevatykh, I. Yu</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Eurasian soil science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalinin, P. I.</au><au>Zanina, O. G.</au><au>Panin, P. G.</au><au>Kudrevatykh, I. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytolithic and Paleolandscape Evidences of Environmental Change in the South of the East-European Plain in the Pleistocene</atitle><jtitle>Eurasian soil science</jtitle><stitle>Eurasian Soil Sc</stitle><date>2024</date><risdate>2024</risdate><volume>57</volume><issue>1</issue><spage>74</spage><epage>85</epage><pages>74-85</pages><issn>1064-2293</issn><eissn>1556-195X</eissn><abstract>The aim of the study is the reconstruction of paleoclimatic patterns in the formation of the Chumbur-Kosa (MIS-17…MIS-1) loess–soil sequences and the assessment of the possibility of using phytolithic analysis to reconstruct the vegetation cover in the interglacial and glacial periods of the Pleistocene. Mean annual precipitation was calculated using the magnetic susceptibility. It has been established that in the Pleistocene there was a directed climate change towards aridization, in which the amount of precipitation during the interglacial periods decreased from 600 to 550 mm/year, and during the glacial periods it did not exceed 200–250 mm/year. Aridization of the climate led to xerophytization of plant communities, a decrease in bioproductivity and landscape diversity. In the warm periods of the Pleistocene, meadow–forb associations prevailed, which were replaced by steppe associations at the onset of the glacial stage. Natural and climatic zones were within the modern boundaries, demonstrating the relative stability of the steppe landscapes to global climatic fluctuations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064229323602494</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7252-2997</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-2293 |
ispartof | Eurasian soil science, 2024, Vol.57 (1), p.74-85 |
issn | 1064-2293 1556-195X |
language | eng |
recordid | cdi_proquest_journals_2937814181 |
source | SpringerLink Journals - AutoHoldings |
subjects | Annual precipitation atmospheric precipitation climate Climate change Climatic zones Earth and Environmental Science Earth Sciences Environmental changes Geotechnical Engineering & Applied Earth Sciences Glacial periods Global climate Global temperature changes Ice ages Interglacial periods landscapes Loess Magnetic permeability Magnetic susceptibility paleoclimatology Paleopedology Plant communities Plant cover Pleistocene Pleistocene epoch Precipitation soil Steppes Vegetation cover |
title | Phytolithic and Paleolandscape Evidences of Environmental Change in the South of the East-European Plain in the Pleistocene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A29%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytolithic%20and%20Paleolandscape%20Evidences%20of%20Environmental%20Change%20in%20the%20South%20of%20the%20East-European%20Plain%20in%20the%20Pleistocene&rft.jtitle=Eurasian%20soil%20science&rft.au=Kalinin,%20P.%20I.&rft.date=2024&rft.volume=57&rft.issue=1&rft.spage=74&rft.epage=85&rft.pages=74-85&rft.issn=1064-2293&rft.eissn=1556-195X&rft_id=info:doi/10.1134/S1064229323602494&rft_dat=%3Cgale_proqu%3EA785447266%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937814181&rft_id=info:pmid/&rft_galeid=A785447266&rfr_iscdi=true |