Will the Globe Encounter the Warmest Winter after the Hottest Summer in 2023?
In the boreal summer and autumn of 2023, the globe experienced an extremely hot period across both oceans and continents. The consecutive record-breaking mean surface temperature has caused many to speculate upon how the global temperature will evolve in the coming 2023/24 boreal winter. In this rep...
Gespeichert in:
Veröffentlicht in: | Advances in atmospheric sciences 2024-04, Vol.41 (4), p.581-586 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 586 |
---|---|
container_issue | 4 |
container_start_page | 581 |
container_title | Advances in atmospheric sciences |
container_volume | 41 |
creator | Zheng, Fei Hu, Shuai Ma, Jiehua Wang, Lin Li, Kexin Wu, Bo Bao, Qing Peng, Jingbei Li, Chaofan Zong, Haifeng Yao, Yao Tian, Baoqiang Chen, Hong Lang, Xianmei Fan, Fangxing Dong, Xiao Zhan, Yanling Zhu, Tao Zhou, Tianjun Zhu, Jiang |
description | In the boreal summer and autumn of 2023, the globe experienced an extremely hot period across both oceans and continents. The consecutive record-breaking mean surface temperature has caused many to speculate upon how the global temperature will evolve in the coming 2023/24 boreal winter. In this report, as shown in the multi-model ensemble mean (MME) prediction released by the Institute of Atmospheric Physics at the Chinese Academy of Sciences, a medium-to-strong eastern Pacific El Niño event will reach its mature phase in the following 2–3 months, which tends to excite an anomalous anticyclone over the western North Pacific and the Pacific-North American teleconnection, thus serving to modulate the winter climate in East Asia and North America. Despite some uncertainty due to unpredictable internal atmospheric variability, the global mean surface temperature (GMST) in the 2023/24 winter will likely be the warmest in recorded history as a consequence of both the El Niño event and the long-term global warming trend. Specifically, the middle and low latitudes of Eurasia are expected to experience an anomalously warm winter, and the surface air temperature anomaly in China will likely exceed 2.4 standard deviations above climatology and subsequently be recorded as the warmest winter since 1991. Moreover, the necessary early warnings are still reliable in the timely updated medium-term numerical weather forecasts and sub-seasonal-to-seasonal prediction. |
doi_str_mv | 10.1007/s00376-023-3330-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2937810609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937810609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7f92df3ca3562464f2196b389097396469a7a9d3e2ea0f64a72a97bff877b9883</originalsourceid><addsrcrecordid>eNp1ULtOwzAUtRBIlMIHsEViNlz7JnY8IVSVFqmIAVBHy0ltSJVHsZOBv6_bgJiYrnTueekQcs3glgHIuwCAUlDgSBERKJyQCcsFoypDPCUT4JmgLEM4JxchbCNbYc4m5Hld1XXSf9pkUXeFTeZt2Q1tb_0RWxvf2NAn6-oIGff7WHZ9f3i8Dk0ToapNeIy-vyRnztTBXv3cKXl_nL_NlnT1sniaPaxoiZnqqXSKbxyWBjPBU5E6zpQoMFegJCqRCmWkURu03BpwIjWSGyUL53IpC5XnOCU3o-_Od19DLKK33eDbGKm5QpkzEKAii42s0ncheOv0zleN8d-agT6spsfVdKyuD6tpiBo-akLkth_W_zn_L9oDCWpszg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937810609</pqid></control><display><type>article</type><title>Will the Globe Encounter the Warmest Winter after the Hottest Summer in 2023?</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zheng, Fei ; Hu, Shuai ; Ma, Jiehua ; Wang, Lin ; Li, Kexin ; Wu, Bo ; Bao, Qing ; Peng, Jingbei ; Li, Chaofan ; Zong, Haifeng ; Yao, Yao ; Tian, Baoqiang ; Chen, Hong ; Lang, Xianmei ; Fan, Fangxing ; Dong, Xiao ; Zhan, Yanling ; Zhu, Tao ; Zhou, Tianjun ; Zhu, Jiang</creator><creatorcontrib>Zheng, Fei ; Hu, Shuai ; Ma, Jiehua ; Wang, Lin ; Li, Kexin ; Wu, Bo ; Bao, Qing ; Peng, Jingbei ; Li, Chaofan ; Zong, Haifeng ; Yao, Yao ; Tian, Baoqiang ; Chen, Hong ; Lang, Xianmei ; Fan, Fangxing ; Dong, Xiao ; Zhan, Yanling ; Zhu, Tao ; Zhou, Tianjun ; Zhu, Jiang</creatorcontrib><description>In the boreal summer and autumn of 2023, the globe experienced an extremely hot period across both oceans and continents. The consecutive record-breaking mean surface temperature has caused many to speculate upon how the global temperature will evolve in the coming 2023/24 boreal winter. In this report, as shown in the multi-model ensemble mean (MME) prediction released by the Institute of Atmospheric Physics at the Chinese Academy of Sciences, a medium-to-strong eastern Pacific El Niño event will reach its mature phase in the following 2–3 months, which tends to excite an anomalous anticyclone over the western North Pacific and the Pacific-North American teleconnection, thus serving to modulate the winter climate in East Asia and North America. Despite some uncertainty due to unpredictable internal atmospheric variability, the global mean surface temperature (GMST) in the 2023/24 winter will likely be the warmest in recorded history as a consequence of both the El Niño event and the long-term global warming trend. Specifically, the middle and low latitudes of Eurasia are expected to experience an anomalously warm winter, and the surface air temperature anomaly in China will likely exceed 2.4 standard deviations above climatology and subsequently be recorded as the warmest winter since 1991. Moreover, the necessary early warnings are still reliable in the timely updated medium-term numerical weather forecasts and sub-seasonal-to-seasonal prediction.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-023-3330-0</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Air temperature ; Anticyclones ; Atmospheric physics ; Atmospheric Sciences ; Atmospheric variability ; Climate and Weather Extremes ; Climate change ; Climatology ; Earth and Environmental Science ; Earth Sciences ; El Nino ; El Nino events ; El Nino phenomena ; Geophysics/Geodesy ; Global temperatures ; Global warming ; Meteorology ; News & Views ; Numerical forecasting ; Oceans ; Physics ; Summer ; Surface temperature ; Surface-air temperature relationships ; Temperature anomalies ; Weather forecasting ; Winter ; Winter climates</subject><ispartof>Advances in atmospheric sciences, 2024-04, Vol.41 (4), p.581-586</ispartof><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press 2023</rights><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-7f92df3ca3562464f2196b389097396469a7a9d3e2ea0f64a72a97bff877b9883</citedby><cites>FETCH-LOGICAL-c359t-7f92df3ca3562464f2196b389097396469a7a9d3e2ea0f64a72a97bff877b9883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00376-023-3330-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00376-023-3330-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zheng, Fei</creatorcontrib><creatorcontrib>Hu, Shuai</creatorcontrib><creatorcontrib>Ma, Jiehua</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Li, Kexin</creatorcontrib><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Bao, Qing</creatorcontrib><creatorcontrib>Peng, Jingbei</creatorcontrib><creatorcontrib>Li, Chaofan</creatorcontrib><creatorcontrib>Zong, Haifeng</creatorcontrib><creatorcontrib>Yao, Yao</creatorcontrib><creatorcontrib>Tian, Baoqiang</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Lang, Xianmei</creatorcontrib><creatorcontrib>Fan, Fangxing</creatorcontrib><creatorcontrib>Dong, Xiao</creatorcontrib><creatorcontrib>Zhan, Yanling</creatorcontrib><creatorcontrib>Zhu, Tao</creatorcontrib><creatorcontrib>Zhou, Tianjun</creatorcontrib><creatorcontrib>Zhu, Jiang</creatorcontrib><title>Will the Globe Encounter the Warmest Winter after the Hottest Summer in 2023?</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><description>In the boreal summer and autumn of 2023, the globe experienced an extremely hot period across both oceans and continents. The consecutive record-breaking mean surface temperature has caused many to speculate upon how the global temperature will evolve in the coming 2023/24 boreal winter. In this report, as shown in the multi-model ensemble mean (MME) prediction released by the Institute of Atmospheric Physics at the Chinese Academy of Sciences, a medium-to-strong eastern Pacific El Niño event will reach its mature phase in the following 2–3 months, which tends to excite an anomalous anticyclone over the western North Pacific and the Pacific-North American teleconnection, thus serving to modulate the winter climate in East Asia and North America. Despite some uncertainty due to unpredictable internal atmospheric variability, the global mean surface temperature (GMST) in the 2023/24 winter will likely be the warmest in recorded history as a consequence of both the El Niño event and the long-term global warming trend. Specifically, the middle and low latitudes of Eurasia are expected to experience an anomalously warm winter, and the surface air temperature anomaly in China will likely exceed 2.4 standard deviations above climatology and subsequently be recorded as the warmest winter since 1991. Moreover, the necessary early warnings are still reliable in the timely updated medium-term numerical weather forecasts and sub-seasonal-to-seasonal prediction.</description><subject>Air temperature</subject><subject>Anticyclones</subject><subject>Atmospheric physics</subject><subject>Atmospheric Sciences</subject><subject>Atmospheric variability</subject><subject>Climate and Weather Extremes</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>El Nino events</subject><subject>El Nino phenomena</subject><subject>Geophysics/Geodesy</subject><subject>Global temperatures</subject><subject>Global warming</subject><subject>Meteorology</subject><subject>News & Views</subject><subject>Numerical forecasting</subject><subject>Oceans</subject><subject>Physics</subject><subject>Summer</subject><subject>Surface temperature</subject><subject>Surface-air temperature relationships</subject><subject>Temperature anomalies</subject><subject>Weather forecasting</subject><subject>Winter</subject><subject>Winter climates</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1ULtOwzAUtRBIlMIHsEViNlz7JnY8IVSVFqmIAVBHy0ltSJVHsZOBv6_bgJiYrnTueekQcs3glgHIuwCAUlDgSBERKJyQCcsFoypDPCUT4JmgLEM4JxchbCNbYc4m5Hld1XXSf9pkUXeFTeZt2Q1tb_0RWxvf2NAn6-oIGff7WHZ9f3i8Dk0ToapNeIy-vyRnztTBXv3cKXl_nL_NlnT1sniaPaxoiZnqqXSKbxyWBjPBU5E6zpQoMFegJCqRCmWkURu03BpwIjWSGyUL53IpC5XnOCU3o-_Od19DLKK33eDbGKm5QpkzEKAii42s0ncheOv0zleN8d-agT6spsfVdKyuD6tpiBo-akLkth_W_zn_L9oDCWpszg</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Zheng, Fei</creator><creator>Hu, Shuai</creator><creator>Ma, Jiehua</creator><creator>Wang, Lin</creator><creator>Li, Kexin</creator><creator>Wu, Bo</creator><creator>Bao, Qing</creator><creator>Peng, Jingbei</creator><creator>Li, Chaofan</creator><creator>Zong, Haifeng</creator><creator>Yao, Yao</creator><creator>Tian, Baoqiang</creator><creator>Chen, Hong</creator><creator>Lang, Xianmei</creator><creator>Fan, Fangxing</creator><creator>Dong, Xiao</creator><creator>Zhan, Yanling</creator><creator>Zhu, Tao</creator><creator>Zhou, Tianjun</creator><creator>Zhu, Jiang</creator><general>Science Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20240401</creationdate><title>Will the Globe Encounter the Warmest Winter after the Hottest Summer in 2023?</title><author>Zheng, Fei ; Hu, Shuai ; Ma, Jiehua ; Wang, Lin ; Li, Kexin ; Wu, Bo ; Bao, Qing ; Peng, Jingbei ; Li, Chaofan ; Zong, Haifeng ; Yao, Yao ; Tian, Baoqiang ; Chen, Hong ; Lang, Xianmei ; Fan, Fangxing ; Dong, Xiao ; Zhan, Yanling ; Zhu, Tao ; Zhou, Tianjun ; Zhu, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7f92df3ca3562464f2196b389097396469a7a9d3e2ea0f64a72a97bff877b9883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air temperature</topic><topic>Anticyclones</topic><topic>Atmospheric physics</topic><topic>Atmospheric Sciences</topic><topic>Atmospheric variability</topic><topic>Climate and Weather Extremes</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>El Nino events</topic><topic>El Nino phenomena</topic><topic>Geophysics/Geodesy</topic><topic>Global temperatures</topic><topic>Global warming</topic><topic>Meteorology</topic><topic>News & Views</topic><topic>Numerical forecasting</topic><topic>Oceans</topic><topic>Physics</topic><topic>Summer</topic><topic>Surface temperature</topic><topic>Surface-air temperature relationships</topic><topic>Temperature anomalies</topic><topic>Weather forecasting</topic><topic>Winter</topic><topic>Winter climates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Fei</creatorcontrib><creatorcontrib>Hu, Shuai</creatorcontrib><creatorcontrib>Ma, Jiehua</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Li, Kexin</creatorcontrib><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Bao, Qing</creatorcontrib><creatorcontrib>Peng, Jingbei</creatorcontrib><creatorcontrib>Li, Chaofan</creatorcontrib><creatorcontrib>Zong, Haifeng</creatorcontrib><creatorcontrib>Yao, Yao</creatorcontrib><creatorcontrib>Tian, Baoqiang</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Lang, Xianmei</creatorcontrib><creatorcontrib>Fan, Fangxing</creatorcontrib><creatorcontrib>Dong, Xiao</creatorcontrib><creatorcontrib>Zhan, Yanling</creatorcontrib><creatorcontrib>Zhu, Tao</creatorcontrib><creatorcontrib>Zhou, Tianjun</creatorcontrib><creatorcontrib>Zhu, Jiang</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Fei</au><au>Hu, Shuai</au><au>Ma, Jiehua</au><au>Wang, Lin</au><au>Li, Kexin</au><au>Wu, Bo</au><au>Bao, Qing</au><au>Peng, Jingbei</au><au>Li, Chaofan</au><au>Zong, Haifeng</au><au>Yao, Yao</au><au>Tian, Baoqiang</au><au>Chen, Hong</au><au>Lang, Xianmei</au><au>Fan, Fangxing</au><au>Dong, Xiao</au><au>Zhan, Yanling</au><au>Zhu, Tao</au><au>Zhou, Tianjun</au><au>Zhu, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Will the Globe Encounter the Warmest Winter after the Hottest Summer in 2023?</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>41</volume><issue>4</issue><spage>581</spage><epage>586</epage><pages>581-586</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>In the boreal summer and autumn of 2023, the globe experienced an extremely hot period across both oceans and continents. The consecutive record-breaking mean surface temperature has caused many to speculate upon how the global temperature will evolve in the coming 2023/24 boreal winter. In this report, as shown in the multi-model ensemble mean (MME) prediction released by the Institute of Atmospheric Physics at the Chinese Academy of Sciences, a medium-to-strong eastern Pacific El Niño event will reach its mature phase in the following 2–3 months, which tends to excite an anomalous anticyclone over the western North Pacific and the Pacific-North American teleconnection, thus serving to modulate the winter climate in East Asia and North America. Despite some uncertainty due to unpredictable internal atmospheric variability, the global mean surface temperature (GMST) in the 2023/24 winter will likely be the warmest in recorded history as a consequence of both the El Niño event and the long-term global warming trend. Specifically, the middle and low latitudes of Eurasia are expected to experience an anomalously warm winter, and the surface air temperature anomaly in China will likely exceed 2.4 standard deviations above climatology and subsequently be recorded as the warmest winter since 1991. Moreover, the necessary early warnings are still reliable in the timely updated medium-term numerical weather forecasts and sub-seasonal-to-seasonal prediction.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s00376-023-3330-0</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-1530 |
ispartof | Advances in atmospheric sciences, 2024-04, Vol.41 (4), p.581-586 |
issn | 0256-1530 1861-9533 |
language | eng |
recordid | cdi_proquest_journals_2937810609 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Air temperature Anticyclones Atmospheric physics Atmospheric Sciences Atmospheric variability Climate and Weather Extremes Climate change Climatology Earth and Environmental Science Earth Sciences El Nino El Nino events El Nino phenomena Geophysics/Geodesy Global temperatures Global warming Meteorology News & Views Numerical forecasting Oceans Physics Summer Surface temperature Surface-air temperature relationships Temperature anomalies Weather forecasting Winter Winter climates |
title | Will the Globe Encounter the Warmest Winter after the Hottest Summer in 2023? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Will%20the%20Globe%20Encounter%20the%20Warmest%20Winter%20after%20the%20Hottest%20Summer%20in%202023?&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Zheng,%20Fei&rft.date=2024-04-01&rft.volume=41&rft.issue=4&rft.spage=581&rft.epage=586&rft.pages=581-586&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-023-3330-0&rft_dat=%3Cproquest_cross%3E2937810609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937810609&rft_id=info:pmid/&rfr_iscdi=true |