Approaches to Cross-Language Retrieval of Similar Legal Documents Based on Machine Learning

— In order to study global experience for legislation changing and rule-making necessitates, tools for information retrieval of regulatory documents written in different languages become increasingly necessary. One of the aspects of information identification is retrieval of thematically similar doc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific and technical information processing 2023-12, Vol.50 (5), p.494-499
Hauptverfasser: Zhebel, V. V., Devyatkin, D. A., Zubarev, D. V., Sochenkov, I. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 499
container_issue 5
container_start_page 494
container_title Scientific and technical information processing
container_volume 50
creator Zhebel, V. V.
Devyatkin, D. A.
Zubarev, D. V.
Sochenkov, I. V.
description — In order to study global experience for legislation changing and rule-making necessitates, tools for information retrieval of regulatory documents written in different languages become increasingly necessary. One of the aspects of information identification is retrieval of thematically similar documents for a given input document. In this context, an important task of cross-lingual search arises when the user of an information system specifies a reference document in one language, and the search results contain relevant documents in other languages. The article describes different approaches to solving this problem: from classic mediator-based methods to more modern solutions, based on distributional semantics. The test collection used in the study was taken from the United Nations Digital Library, which provides legal documents in both the original English and their Russian translations.
doi_str_mv 10.3103/S0147688223050167
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2937810606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937810606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-fda6233d3c6ed0128bf57be49f0afd0a4c3999e01dbebc505a5cce200b9b2bbe3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9VJ0qbNUde_UBFcPXkoSTqtXXbTNWkFv70pK3gQTwMzv_eG9wg5ZXAuGIiLJbA0l0XBuYAMmMz3yIwpkSYFY8U-mU3nZLofkqMQVgCZ5KmakbfL7db32r5joENPF74PISm1a0fdIn3GwXf4qde0b-iy23Rr7WmJbVxc93bcoBsCvdIBa9o7-hhtOocR0N51rj0mB41eBzz5mXPyenvzsrhPyqe7h8VlmVguiyFpai25ELWwEmtgvDBNlhtMVQO6qUGnViilEFht0NgMMp1ZixzAKMONQTEnZzvfmORjxDBUq370Lr6suBJ5wUCCjBTbUXbK6LGptr7baP9VMaimDqs_HUYN32lCZF2L_tf5f9E3nDlzxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937810606</pqid></control><display><type>article</type><title>Approaches to Cross-Language Retrieval of Similar Legal Documents Based on Machine Learning</title><source>SpringerNature Journals</source><creator>Zhebel, V. V. ; Devyatkin, D. A. ; Zubarev, D. V. ; Sochenkov, I. V.</creator><creatorcontrib>Zhebel, V. V. ; Devyatkin, D. A. ; Zubarev, D. V. ; Sochenkov, I. V.</creatorcontrib><description>— In order to study global experience for legislation changing and rule-making necessitates, tools for information retrieval of regulatory documents written in different languages become increasingly necessary. One of the aspects of information identification is retrieval of thematically similar documents for a given input document. In this context, an important task of cross-lingual search arises when the user of an information system specifies a reference document in one language, and the search results contain relevant documents in other languages. The article describes different approaches to solving this problem: from classic mediator-based methods to more modern solutions, based on distributional semantics. The test collection used in the study was taken from the United Nations Digital Library, which provides legal documents in both the original English and their Russian translations.</description><identifier>ISSN: 0147-6882</identifier><identifier>EISSN: 1934-8118</identifier><identifier>DOI: 10.3103/S0147688223050167</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computer Science ; Computer Systems Organization and Communication Networks ; Digital systems ; Documents ; Information retrieval ; Languages ; Legislation ; Machine learning ; Semantics ; Translations</subject><ispartof>Scientific and technical information processing, 2023-12, Vol.50 (5), p.494-499</ispartof><rights>Allerton Press, Inc. 2023. ISSN 0147-6882, Scientific and Technical Information Processing, 2023, Vol. 50, No. 5, pp. 494–499. © Allerton Press, Inc., 2023. Russian Text © The Author(s), 2022, published in Iskusstvennyi Intellekt i Prinyatie Reshenii, 2022, No. 2, pp. 27–35.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-fda6233d3c6ed0128bf57be49f0afd0a4c3999e01dbebc505a5cce200b9b2bbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0147688223050167$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0147688223050167$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Zhebel, V. V.</creatorcontrib><creatorcontrib>Devyatkin, D. A.</creatorcontrib><creatorcontrib>Zubarev, D. V.</creatorcontrib><creatorcontrib>Sochenkov, I. V.</creatorcontrib><title>Approaches to Cross-Language Retrieval of Similar Legal Documents Based on Machine Learning</title><title>Scientific and technical information processing</title><addtitle>Sci. Tech. Inf. Proc</addtitle><description>— In order to study global experience for legislation changing and rule-making necessitates, tools for information retrieval of regulatory documents written in different languages become increasingly necessary. One of the aspects of information identification is retrieval of thematically similar documents for a given input document. In this context, an important task of cross-lingual search arises when the user of an information system specifies a reference document in one language, and the search results contain relevant documents in other languages. The article describes different approaches to solving this problem: from classic mediator-based methods to more modern solutions, based on distributional semantics. The test collection used in the study was taken from the United Nations Digital Library, which provides legal documents in both the original English and their Russian translations.</description><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Digital systems</subject><subject>Documents</subject><subject>Information retrieval</subject><subject>Languages</subject><subject>Legislation</subject><subject>Machine learning</subject><subject>Semantics</subject><subject>Translations</subject><issn>0147-6882</issn><issn>1934-8118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9VJ0qbNUde_UBFcPXkoSTqtXXbTNWkFv70pK3gQTwMzv_eG9wg5ZXAuGIiLJbA0l0XBuYAMmMz3yIwpkSYFY8U-mU3nZLofkqMQVgCZ5KmakbfL7db32r5joENPF74PISm1a0fdIn3GwXf4qde0b-iy23Rr7WmJbVxc93bcoBsCvdIBa9o7-hhtOocR0N51rj0mB41eBzz5mXPyenvzsrhPyqe7h8VlmVguiyFpai25ELWwEmtgvDBNlhtMVQO6qUGnViilEFht0NgMMp1ZixzAKMONQTEnZzvfmORjxDBUq370Lr6suBJ5wUCCjBTbUXbK6LGptr7baP9VMaimDqs_HUYN32lCZF2L_tf5f9E3nDlzxA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zhebel, V. V.</creator><creator>Devyatkin, D. A.</creator><creator>Zubarev, D. V.</creator><creator>Sochenkov, I. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231201</creationdate><title>Approaches to Cross-Language Retrieval of Similar Legal Documents Based on Machine Learning</title><author>Zhebel, V. V. ; Devyatkin, D. A. ; Zubarev, D. V. ; Sochenkov, I. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-fda6233d3c6ed0128bf57be49f0afd0a4c3999e01dbebc505a5cce200b9b2bbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Digital systems</topic><topic>Documents</topic><topic>Information retrieval</topic><topic>Languages</topic><topic>Legislation</topic><topic>Machine learning</topic><topic>Semantics</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhebel, V. V.</creatorcontrib><creatorcontrib>Devyatkin, D. A.</creatorcontrib><creatorcontrib>Zubarev, D. V.</creatorcontrib><creatorcontrib>Sochenkov, I. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific and technical information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhebel, V. V.</au><au>Devyatkin, D. A.</au><au>Zubarev, D. V.</au><au>Sochenkov, I. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approaches to Cross-Language Retrieval of Similar Legal Documents Based on Machine Learning</atitle><jtitle>Scientific and technical information processing</jtitle><stitle>Sci. Tech. Inf. Proc</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>50</volume><issue>5</issue><spage>494</spage><epage>499</epage><pages>494-499</pages><issn>0147-6882</issn><eissn>1934-8118</eissn><abstract>— In order to study global experience for legislation changing and rule-making necessitates, tools for information retrieval of regulatory documents written in different languages become increasingly necessary. One of the aspects of information identification is retrieval of thematically similar documents for a given input document. In this context, an important task of cross-lingual search arises when the user of an information system specifies a reference document in one language, and the search results contain relevant documents in other languages. The article describes different approaches to solving this problem: from classic mediator-based methods to more modern solutions, based on distributional semantics. The test collection used in the study was taken from the United Nations Digital Library, which provides legal documents in both the original English and their Russian translations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0147688223050167</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0147-6882
ispartof Scientific and technical information processing, 2023-12, Vol.50 (5), p.494-499
issn 0147-6882
1934-8118
language eng
recordid cdi_proquest_journals_2937810606
source SpringerNature Journals
subjects Computer Science
Computer Systems Organization and Communication Networks
Digital systems
Documents
Information retrieval
Languages
Legislation
Machine learning
Semantics
Translations
title Approaches to Cross-Language Retrieval of Similar Legal Documents Based on Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T01%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approaches%20to%20Cross-Language%20Retrieval%20of%20Similar%20Legal%20Documents%20Based%20on%20Machine%20Learning&rft.jtitle=Scientific%20and%20technical%20information%20processing&rft.au=Zhebel,%20V.%20V.&rft.date=2023-12-01&rft.volume=50&rft.issue=5&rft.spage=494&rft.epage=499&rft.pages=494-499&rft.issn=0147-6882&rft.eissn=1934-8118&rft_id=info:doi/10.3103/S0147688223050167&rft_dat=%3Cproquest_cross%3E2937810606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937810606&rft_id=info:pmid/&rfr_iscdi=true