FeZrN Films with Nanocomposite Structure for Soft Magnetic Applications

The Fe 56.8–72.5 Zr 5.9–11.6 N 13.8–31.6 O 1.2–3.4 films were prepared by magnetron deposition. The metastable structural and phase state, which was formed upon deposition, is represented by either mixed (nanocrystalline αFe(Zr,N) + amorphous) or amorphous structure. During subsequent annealing (300...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of metals and metallography 2023-12, Vol.124 (14), p.1645-1653
Hauptverfasser: Sheftel, E. N., Harin, E. V., Tedzhetov, V. A., Usmanova, G. Sh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1653
container_issue 14
container_start_page 1645
container_title Physics of metals and metallography
container_volume 124
creator Sheftel, E. N.
Harin, E. V.
Tedzhetov, V. A.
Usmanova, G. Sh
description The Fe 56.8–72.5 Zr 5.9–11.6 N 13.8–31.6 O 1.2–3.4 films were prepared by magnetron deposition. The metastable structural and phase state, which was formed upon deposition, is represented by either mixed (nanocrystalline αFe(Zr,N) + amorphous) or amorphous structure. During subsequent annealing (300–600°C), it slightly shifts toward the stable state due to partial crystallization of the amorphous phase and precipitation of the secondary phases (Fe 4 N, Fe 3 N, and ZrO 2 ). The grain structure of the films (grains 3–12 nm in size) is characterized by thermal stability. The relatively low saturation magnetization M s (870–1400 G) of the films is explained by the presence of the amorphous phase and αFe(Zr,N) solid solution, which remain in the film structure after annealing at all temperatures. The stochastic domain structure is formed in all films under study due to exchange interaction between grains and clusters in the amorphous structure. The strong dependence of the magnetic structure on the phase state and grain structure of the films is demonstrated. The combination of low local magnetic anisotropy and the highest stochastic domain size predetermines the lowest coercive field of the films, which varies in a range of 1 to 50 Oe.
doi_str_mv 10.1134/S0031918X23601336
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2937810193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A785448292</galeid><sourcerecordid>A785448292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-390fa3f0545de8c297e6b43bf5d22b2181d4d7c7f413cd92fbe38d09049274273</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz13zr01zXBZ3Fdb1UAXxUtI0WbO0TU1SxG9vlwoeROYwMO_9ZoYHwDVGC4wpuy0Qoljg_JXQDGFKsxMww2maJhkW6BTMjnJy1M_BRQgHhBhjGZ2BzVq_-R1c26YN8NPGd7iTnVOu7V2wUcMi-kHFwWtonIeFMxE-yn2no1Vw2feNVTJa14VLcGZkE_TVT5-Dl_Xd8-o-2T5tHlbLbaIo4jGhAhlJDUpZWutcEcF1VjFambQmpCI4xzWrueKGYapqQUylaV4jgZggnBFO5-Bm2tt79zHoEMuDG3w3niyJoDzHCAs6uhaTay8bXdrOuOilGqvWrVWu08aO8yXPU8ZyIsgI4AlQ3oXgtSl7b1vpv0qMymPA5Z-AR4ZMTBi93V7731f-h74BBKl7nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937810193</pqid></control><display><type>article</type><title>FeZrN Films with Nanocomposite Structure for Soft Magnetic Applications</title><source>SpringerLink Journals</source><creator>Sheftel, E. N. ; Harin, E. V. ; Tedzhetov, V. A. ; Usmanova, G. Sh</creator><creatorcontrib>Sheftel, E. N. ; Harin, E. V. ; Tedzhetov, V. A. ; Usmanova, G. Sh</creatorcontrib><description>The Fe 56.8–72.5 Zr 5.9–11.6 N 13.8–31.6 O 1.2–3.4 films were prepared by magnetron deposition. The metastable structural and phase state, which was formed upon deposition, is represented by either mixed (nanocrystalline αFe(Zr,N) + amorphous) or amorphous structure. During subsequent annealing (300–600°C), it slightly shifts toward the stable state due to partial crystallization of the amorphous phase and precipitation of the secondary phases (Fe 4 N, Fe 3 N, and ZrO 2 ). The grain structure of the films (grains 3–12 nm in size) is characterized by thermal stability. The relatively low saturation magnetization M s (870–1400 G) of the films is explained by the presence of the amorphous phase and αFe(Zr,N) solid solution, which remain in the film structure after annealing at all temperatures. The stochastic domain structure is formed in all films under study due to exchange interaction between grains and clusters in the amorphous structure. The strong dependence of the magnetic structure on the phase state and grain structure of the films is demonstrated. The combination of low local magnetic anisotropy and the highest stochastic domain size predetermines the lowest coercive field of the films, which varies in a range of 1 to 50 Oe.</description><identifier>ISSN: 0031-918X</identifier><identifier>EISSN: 1555-6190</identifier><identifier>DOI: 10.1134/S0031918X23601336</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amorphous structure ; Anisotropy ; Annealing ; Chemistry and Materials Science ; Coercivity ; Crystallization ; Deposition ; Electrical and Magnetic Properties ; Grain structure ; Iron nitride ; Magnetic anisotropy ; Magnetic saturation ; Magnetic structure ; Magnetization ; Materials Science ; Metallic glasses ; Metallic Materials ; Nanocomposites ; Solid solutions ; Thermal stability ; Zirconium dioxide</subject><ispartof>Physics of metals and metallography, 2023-12, Vol.124 (14), p.1645-1653</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0031-918X, Physics of Metals and Metallography, 2023, Vol. 124, No. 14, pp. 1645–1653. © Pleiades Publishing, Ltd., 2023. ISSN 0031-918X, Physics of Metals and Metallography, 2023. © Pleiades Publishing, Ltd., 2023.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-390fa3f0545de8c297e6b43bf5d22b2181d4d7c7f413cd92fbe38d09049274273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0031918X23601336$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0031918X23601336$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sheftel, E. N.</creatorcontrib><creatorcontrib>Harin, E. V.</creatorcontrib><creatorcontrib>Tedzhetov, V. A.</creatorcontrib><creatorcontrib>Usmanova, G. Sh</creatorcontrib><title>FeZrN Films with Nanocomposite Structure for Soft Magnetic Applications</title><title>Physics of metals and metallography</title><addtitle>Phys. Metals Metallogr</addtitle><description>The Fe 56.8–72.5 Zr 5.9–11.6 N 13.8–31.6 O 1.2–3.4 films were prepared by magnetron deposition. The metastable structural and phase state, which was formed upon deposition, is represented by either mixed (nanocrystalline αFe(Zr,N) + amorphous) or amorphous structure. During subsequent annealing (300–600°C), it slightly shifts toward the stable state due to partial crystallization of the amorphous phase and precipitation of the secondary phases (Fe 4 N, Fe 3 N, and ZrO 2 ). The grain structure of the films (grains 3–12 nm in size) is characterized by thermal stability. The relatively low saturation magnetization M s (870–1400 G) of the films is explained by the presence of the amorphous phase and αFe(Zr,N) solid solution, which remain in the film structure after annealing at all temperatures. The stochastic domain structure is formed in all films under study due to exchange interaction between grains and clusters in the amorphous structure. The strong dependence of the magnetic structure on the phase state and grain structure of the films is demonstrated. The combination of low local magnetic anisotropy and the highest stochastic domain size predetermines the lowest coercive field of the films, which varies in a range of 1 to 50 Oe.</description><subject>Amorphous structure</subject><subject>Anisotropy</subject><subject>Annealing</subject><subject>Chemistry and Materials Science</subject><subject>Coercivity</subject><subject>Crystallization</subject><subject>Deposition</subject><subject>Electrical and Magnetic Properties</subject><subject>Grain structure</subject><subject>Iron nitride</subject><subject>Magnetic anisotropy</subject><subject>Magnetic saturation</subject><subject>Magnetic structure</subject><subject>Magnetization</subject><subject>Materials Science</subject><subject>Metallic glasses</subject><subject>Metallic Materials</subject><subject>Nanocomposites</subject><subject>Solid solutions</subject><subject>Thermal stability</subject><subject>Zirconium dioxide</subject><issn>0031-918X</issn><issn>1555-6190</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz13zr01zXBZ3Fdb1UAXxUtI0WbO0TU1SxG9vlwoeROYwMO_9ZoYHwDVGC4wpuy0Qoljg_JXQDGFKsxMww2maJhkW6BTMjnJy1M_BRQgHhBhjGZ2BzVq_-R1c26YN8NPGd7iTnVOu7V2wUcMi-kHFwWtonIeFMxE-yn2no1Vw2feNVTJa14VLcGZkE_TVT5-Dl_Xd8-o-2T5tHlbLbaIo4jGhAhlJDUpZWutcEcF1VjFambQmpCI4xzWrueKGYapqQUylaV4jgZggnBFO5-Bm2tt79zHoEMuDG3w3niyJoDzHCAs6uhaTay8bXdrOuOilGqvWrVWu08aO8yXPU8ZyIsgI4AlQ3oXgtSl7b1vpv0qMymPA5Z-AR4ZMTBi93V7731f-h74BBKl7nw</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Sheftel, E. N.</creator><creator>Harin, E. V.</creator><creator>Tedzhetov, V. A.</creator><creator>Usmanova, G. Sh</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20231201</creationdate><title>FeZrN Films with Nanocomposite Structure for Soft Magnetic Applications</title><author>Sheftel, E. N. ; Harin, E. V. ; Tedzhetov, V. A. ; Usmanova, G. Sh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-390fa3f0545de8c297e6b43bf5d22b2181d4d7c7f413cd92fbe38d09049274273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amorphous structure</topic><topic>Anisotropy</topic><topic>Annealing</topic><topic>Chemistry and Materials Science</topic><topic>Coercivity</topic><topic>Crystallization</topic><topic>Deposition</topic><topic>Electrical and Magnetic Properties</topic><topic>Grain structure</topic><topic>Iron nitride</topic><topic>Magnetic anisotropy</topic><topic>Magnetic saturation</topic><topic>Magnetic structure</topic><topic>Magnetization</topic><topic>Materials Science</topic><topic>Metallic glasses</topic><topic>Metallic Materials</topic><topic>Nanocomposites</topic><topic>Solid solutions</topic><topic>Thermal stability</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheftel, E. N.</creatorcontrib><creatorcontrib>Harin, E. V.</creatorcontrib><creatorcontrib>Tedzhetov, V. A.</creatorcontrib><creatorcontrib>Usmanova, G. Sh</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Physics of metals and metallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheftel, E. N.</au><au>Harin, E. V.</au><au>Tedzhetov, V. A.</au><au>Usmanova, G. Sh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FeZrN Films with Nanocomposite Structure for Soft Magnetic Applications</atitle><jtitle>Physics of metals and metallography</jtitle><stitle>Phys. Metals Metallogr</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>124</volume><issue>14</issue><spage>1645</spage><epage>1653</epage><pages>1645-1653</pages><issn>0031-918X</issn><eissn>1555-6190</eissn><abstract>The Fe 56.8–72.5 Zr 5.9–11.6 N 13.8–31.6 O 1.2–3.4 films were prepared by magnetron deposition. The metastable structural and phase state, which was formed upon deposition, is represented by either mixed (nanocrystalline αFe(Zr,N) + amorphous) or amorphous structure. During subsequent annealing (300–600°C), it slightly shifts toward the stable state due to partial crystallization of the amorphous phase and precipitation of the secondary phases (Fe 4 N, Fe 3 N, and ZrO 2 ). The grain structure of the films (grains 3–12 nm in size) is characterized by thermal stability. The relatively low saturation magnetization M s (870–1400 G) of the films is explained by the presence of the amorphous phase and αFe(Zr,N) solid solution, which remain in the film structure after annealing at all temperatures. The stochastic domain structure is formed in all films under study due to exchange interaction between grains and clusters in the amorphous structure. The strong dependence of the magnetic structure on the phase state and grain structure of the films is demonstrated. The combination of low local magnetic anisotropy and the highest stochastic domain size predetermines the lowest coercive field of the films, which varies in a range of 1 to 50 Oe.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0031918X23601336</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-918X
ispartof Physics of metals and metallography, 2023-12, Vol.124 (14), p.1645-1653
issn 0031-918X
1555-6190
language eng
recordid cdi_proquest_journals_2937810193
source SpringerLink Journals
subjects Amorphous structure
Anisotropy
Annealing
Chemistry and Materials Science
Coercivity
Crystallization
Deposition
Electrical and Magnetic Properties
Grain structure
Iron nitride
Magnetic anisotropy
Magnetic saturation
Magnetic structure
Magnetization
Materials Science
Metallic glasses
Metallic Materials
Nanocomposites
Solid solutions
Thermal stability
Zirconium dioxide
title FeZrN Films with Nanocomposite Structure for Soft Magnetic Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FeZrN%20Films%20with%20Nanocomposite%20Structure%20for%20Soft%20Magnetic%20Applications&rft.jtitle=Physics%20of%20metals%20and%20metallography&rft.au=Sheftel,%20E.%20N.&rft.date=2023-12-01&rft.volume=124&rft.issue=14&rft.spage=1645&rft.epage=1653&rft.pages=1645-1653&rft.issn=0031-918X&rft.eissn=1555-6190&rft_id=info:doi/10.1134/S0031918X23601336&rft_dat=%3Cgale_proqu%3EA785448292%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937810193&rft_id=info:pmid/&rft_galeid=A785448292&rfr_iscdi=true