Investigation on the mechanical and fracture properties of lightweight pumice epoxy composites

Pumice, which is prevalent in Ethiopia, is formed naturally during the quick cooling and solidifying of molten lava. Pumice is a naturally occurring mineral that, due to its high thermal resistance and lightweightness, can be an excellent candidate for reinforcing material for polymers. The present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2024-03, Vol.64 (3), p.1071-1082
Hauptverfasser: Shahapurkar, Kiran, Zelalem, Yordanos Mengistu, Chenrayan, Venkatesh, Soudagar, Manzoore Elahi M., Fouad, Yasser, Kalam, M. A., Kiran, M. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1082
container_issue 3
container_start_page 1071
container_title Polymer engineering and science
container_volume 64
creator Shahapurkar, Kiran
Zelalem, Yordanos Mengistu
Chenrayan, Venkatesh
Soudagar, Manzoore Elahi M.
Fouad, Yasser
Kalam, M. A.
Kiran, M. C.
description Pumice, which is prevalent in Ethiopia, is formed naturally during the quick cooling and solidifying of molten lava. Pumice is a naturally occurring mineral that, due to its high thermal resistance and lightweightness, can be an excellent candidate for reinforcing material for polymers. The present study investigates epoxy‐based composites reinforced with pumice particles by varying the pumice content (0, 10, 20, and 30 vol%). The densities of all composites reduce in comparison with neat epoxy as the volume proportion of pumice increases credited to the low density pumice particles. Tensile stress–strain curves depict neat epoxy with higher deformation than other pumice particulate‐filled composites in the linear elastic area followed by rapid brittle failure. Tensile modulus of all the composites increases in the range of 13%–67% in comparison with neat epoxy. The compressive characteristics of composites are greatly improved by the addition of pumice. Compressive moduli and specific compressive moduli of all composites increase with increasing volume fraction of pumice by 54%–58% and 65%–93%, respectively, in comparison with neat epoxy. The fracture toughness of P‐10, P‐20, and P‐30 composites improved by 18%, 54%, and 59%, respectively, as compared with neat epoxy mainly attributed to the foam‐like structure of pumice particles. SEM micrographs are used to analyze the morphology of compression‐tested specimens. Property mapping highlights the advantages of utilizing composites from present work over numerous syntactic foams. Lightweight Pumice/Epoxy Composites.
doi_str_mv 10.1002/pen.26597
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2937492164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A789471995</galeid><sourcerecordid>A789471995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4337-a773066b7aba6d4ae2af5afc8e54b96817e246406fcf38a5970893958638503a3</originalsourceid><addsrcrecordid>eNp1kl1rFDEUhgdRcK1e-A8CXgnONjPJ5OOylKoLxZZWbw3Z7MlsykwyJhnb_fdmXUEXVhJOIDzv-eKtqrcNXjYYt-cT-GXLOsmfVYumo6JuGaHPqwXGpK2JEOJl9SqlB1xY0slF9X3lf0LKrtfZBY_KzVtAI5it9s7oAWm_QTZqk-cIaIphgpgdJBQsGly_zY-wj2iaR2cAwRSedsiEcQrJZUivqxdWDwne_HnPqm8fr75efq6vbz6tLi-ua0MJ4bXmnGDG1lyvNdtQDa22nbZGQEfXkomGQ0sZxcwaS4Qu42EhiewEI6LDRJOz6t0hb-nwx1wGUg9hjr6UVK0knMq2YfQv1esBlPM25DLZ6JJRF1xIyhspu0LVJ6gePEQ9BA_Wle8jfnmCL2cDZScnBe-PBIXJ8JR7PaekVvd3x-yHf9j1nJyHVELabz0dJKdSmxhSimDVFN2o4041WO0NoopB1G-DFPb8wD6W_nb_B9Xt1ZeD4heYAbqj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937492164</pqid></control><display><type>article</type><title>Investigation on the mechanical and fracture properties of lightweight pumice epoxy composites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shahapurkar, Kiran ; Zelalem, Yordanos Mengistu ; Chenrayan, Venkatesh ; Soudagar, Manzoore Elahi M. ; Fouad, Yasser ; Kalam, M. A. ; Kiran, M. C.</creator><creatorcontrib>Shahapurkar, Kiran ; Zelalem, Yordanos Mengistu ; Chenrayan, Venkatesh ; Soudagar, Manzoore Elahi M. ; Fouad, Yasser ; Kalam, M. A. ; Kiran, M. C.</creatorcontrib><description>Pumice, which is prevalent in Ethiopia, is formed naturally during the quick cooling and solidifying of molten lava. Pumice is a naturally occurring mineral that, due to its high thermal resistance and lightweightness, can be an excellent candidate for reinforcing material for polymers. The present study investigates epoxy‐based composites reinforced with pumice particles by varying the pumice content (0, 10, 20, and 30 vol%). The densities of all composites reduce in comparison with neat epoxy as the volume proportion of pumice increases credited to the low density pumice particles. Tensile stress–strain curves depict neat epoxy with higher deformation than other pumice particulate‐filled composites in the linear elastic area followed by rapid brittle failure. Tensile modulus of all the composites increases in the range of 13%–67% in comparison with neat epoxy. The compressive characteristics of composites are greatly improved by the addition of pumice. Compressive moduli and specific compressive moduli of all composites increase with increasing volume fraction of pumice by 54%–58% and 65%–93%, respectively, in comparison with neat epoxy. The fracture toughness of P‐10, P‐20, and P‐30 composites improved by 18%, 54%, and 59%, respectively, as compared with neat epoxy mainly attributed to the foam‐like structure of pumice particles. SEM micrographs are used to analyze the morphology of compression‐tested specimens. Property mapping highlights the advantages of utilizing composites from present work over numerous syntactic foams. Lightweight Pumice/Epoxy Composites.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.26597</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Air pollution ; Analysis ; composites ; compression ; Elastic deformation ; epoxy ; Epoxy resins ; Fractions ; Fracture toughness ; Investigations ; Mechanical properties ; Modulus of elasticity ; Particulate composites ; Photomicrographs ; Pumice ; Skeletal composites ; Stress-strain curves ; Syntactic foams ; tensile ; Tensile stress ; Thermal resistance</subject><ispartof>Polymer engineering and science, 2024-03, Vol.64 (3), p.1071-1082</ispartof><rights>2023 Society of Plastics Engineers.</rights><rights>COPYRIGHT 2024 Society of Plastics Engineers, Inc.</rights><rights>2024 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4337-a773066b7aba6d4ae2af5afc8e54b96817e246406fcf38a5970893958638503a3</cites><orcidid>0000-0002-6089-2616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.26597$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.26597$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shahapurkar, Kiran</creatorcontrib><creatorcontrib>Zelalem, Yordanos Mengistu</creatorcontrib><creatorcontrib>Chenrayan, Venkatesh</creatorcontrib><creatorcontrib>Soudagar, Manzoore Elahi M.</creatorcontrib><creatorcontrib>Fouad, Yasser</creatorcontrib><creatorcontrib>Kalam, M. A.</creatorcontrib><creatorcontrib>Kiran, M. C.</creatorcontrib><title>Investigation on the mechanical and fracture properties of lightweight pumice epoxy composites</title><title>Polymer engineering and science</title><description>Pumice, which is prevalent in Ethiopia, is formed naturally during the quick cooling and solidifying of molten lava. Pumice is a naturally occurring mineral that, due to its high thermal resistance and lightweightness, can be an excellent candidate for reinforcing material for polymers. The present study investigates epoxy‐based composites reinforced with pumice particles by varying the pumice content (0, 10, 20, and 30 vol%). The densities of all composites reduce in comparison with neat epoxy as the volume proportion of pumice increases credited to the low density pumice particles. Tensile stress–strain curves depict neat epoxy with higher deformation than other pumice particulate‐filled composites in the linear elastic area followed by rapid brittle failure. Tensile modulus of all the composites increases in the range of 13%–67% in comparison with neat epoxy. The compressive characteristics of composites are greatly improved by the addition of pumice. Compressive moduli and specific compressive moduli of all composites increase with increasing volume fraction of pumice by 54%–58% and 65%–93%, respectively, in comparison with neat epoxy. The fracture toughness of P‐10, P‐20, and P‐30 composites improved by 18%, 54%, and 59%, respectively, as compared with neat epoxy mainly attributed to the foam‐like structure of pumice particles. SEM micrographs are used to analyze the morphology of compression‐tested specimens. Property mapping highlights the advantages of utilizing composites from present work over numerous syntactic foams. Lightweight Pumice/Epoxy Composites.</description><subject>Air pollution</subject><subject>Analysis</subject><subject>composites</subject><subject>compression</subject><subject>Elastic deformation</subject><subject>epoxy</subject><subject>Epoxy resins</subject><subject>Fractions</subject><subject>Fracture toughness</subject><subject>Investigations</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Particulate composites</subject><subject>Photomicrographs</subject><subject>Pumice</subject><subject>Skeletal composites</subject><subject>Stress-strain curves</subject><subject>Syntactic foams</subject><subject>tensile</subject><subject>Tensile stress</subject><subject>Thermal resistance</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kl1rFDEUhgdRcK1e-A8CXgnONjPJ5OOylKoLxZZWbw3Z7MlsykwyJhnb_fdmXUEXVhJOIDzv-eKtqrcNXjYYt-cT-GXLOsmfVYumo6JuGaHPqwXGpK2JEOJl9SqlB1xY0slF9X3lf0LKrtfZBY_KzVtAI5it9s7oAWm_QTZqk-cIaIphgpgdJBQsGly_zY-wj2iaR2cAwRSedsiEcQrJZUivqxdWDwne_HnPqm8fr75efq6vbz6tLi-ua0MJ4bXmnGDG1lyvNdtQDa22nbZGQEfXkomGQ0sZxcwaS4Qu42EhiewEI6LDRJOz6t0hb-nwx1wGUg9hjr6UVK0knMq2YfQv1esBlPM25DLZ6JJRF1xIyhspu0LVJ6gePEQ9BA_Wle8jfnmCL2cDZScnBe-PBIXJ8JR7PaekVvd3x-yHf9j1nJyHVELabz0dJKdSmxhSimDVFN2o4041WO0NoopB1G-DFPb8wD6W_nb_B9Xt1ZeD4heYAbqj</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Shahapurkar, Kiran</creator><creator>Zelalem, Yordanos Mengistu</creator><creator>Chenrayan, Venkatesh</creator><creator>Soudagar, Manzoore Elahi M.</creator><creator>Fouad, Yasser</creator><creator>Kalam, M. A.</creator><creator>Kiran, M. C.</creator><general>John Wiley &amp; Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6089-2616</orcidid></search><sort><creationdate>202403</creationdate><title>Investigation on the mechanical and fracture properties of lightweight pumice epoxy composites</title><author>Shahapurkar, Kiran ; Zelalem, Yordanos Mengistu ; Chenrayan, Venkatesh ; Soudagar, Manzoore Elahi M. ; Fouad, Yasser ; Kalam, M. A. ; Kiran, M. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4337-a773066b7aba6d4ae2af5afc8e54b96817e246406fcf38a5970893958638503a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air pollution</topic><topic>Analysis</topic><topic>composites</topic><topic>compression</topic><topic>Elastic deformation</topic><topic>epoxy</topic><topic>Epoxy resins</topic><topic>Fractions</topic><topic>Fracture toughness</topic><topic>Investigations</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Particulate composites</topic><topic>Photomicrographs</topic><topic>Pumice</topic><topic>Skeletal composites</topic><topic>Stress-strain curves</topic><topic>Syntactic foams</topic><topic>tensile</topic><topic>Tensile stress</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahapurkar, Kiran</creatorcontrib><creatorcontrib>Zelalem, Yordanos Mengistu</creatorcontrib><creatorcontrib>Chenrayan, Venkatesh</creatorcontrib><creatorcontrib>Soudagar, Manzoore Elahi M.</creatorcontrib><creatorcontrib>Fouad, Yasser</creatorcontrib><creatorcontrib>Kalam, M. A.</creatorcontrib><creatorcontrib>Kiran, M. C.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahapurkar, Kiran</au><au>Zelalem, Yordanos Mengistu</au><au>Chenrayan, Venkatesh</au><au>Soudagar, Manzoore Elahi M.</au><au>Fouad, Yasser</au><au>Kalam, M. A.</au><au>Kiran, M. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on the mechanical and fracture properties of lightweight pumice epoxy composites</atitle><jtitle>Polymer engineering and science</jtitle><date>2024-03</date><risdate>2024</risdate><volume>64</volume><issue>3</issue><spage>1071</spage><epage>1082</epage><pages>1071-1082</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>Pumice, which is prevalent in Ethiopia, is formed naturally during the quick cooling and solidifying of molten lava. Pumice is a naturally occurring mineral that, due to its high thermal resistance and lightweightness, can be an excellent candidate for reinforcing material for polymers. The present study investigates epoxy‐based composites reinforced with pumice particles by varying the pumice content (0, 10, 20, and 30 vol%). The densities of all composites reduce in comparison with neat epoxy as the volume proportion of pumice increases credited to the low density pumice particles. Tensile stress–strain curves depict neat epoxy with higher deformation than other pumice particulate‐filled composites in the linear elastic area followed by rapid brittle failure. Tensile modulus of all the composites increases in the range of 13%–67% in comparison with neat epoxy. The compressive characteristics of composites are greatly improved by the addition of pumice. Compressive moduli and specific compressive moduli of all composites increase with increasing volume fraction of pumice by 54%–58% and 65%–93%, respectively, in comparison with neat epoxy. The fracture toughness of P‐10, P‐20, and P‐30 composites improved by 18%, 54%, and 59%, respectively, as compared with neat epoxy mainly attributed to the foam‐like structure of pumice particles. SEM micrographs are used to analyze the morphology of compression‐tested specimens. Property mapping highlights the advantages of utilizing composites from present work over numerous syntactic foams. Lightweight Pumice/Epoxy Composites.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pen.26597</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6089-2616</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2024-03, Vol.64 (3), p.1071-1082
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_journals_2937492164
source Wiley Online Library Journals Frontfile Complete
subjects Air pollution
Analysis
composites
compression
Elastic deformation
epoxy
Epoxy resins
Fractions
Fracture toughness
Investigations
Mechanical properties
Modulus of elasticity
Particulate composites
Photomicrographs
Pumice
Skeletal composites
Stress-strain curves
Syntactic foams
tensile
Tensile stress
Thermal resistance
title Investigation on the mechanical and fracture properties of lightweight pumice epoxy composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20the%20mechanical%20and%20fracture%20properties%20of%20lightweight%20pumice%20epoxy%20composites&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Shahapurkar,%20Kiran&rft.date=2024-03&rft.volume=64&rft.issue=3&rft.spage=1071&rft.epage=1082&rft.pages=1071-1082&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.26597&rft_dat=%3Cgale_proqu%3EA789471995%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937492164&rft_id=info:pmid/&rft_galeid=A789471995&rfr_iscdi=true