A Ricci flow on graphs from effective resistance
In this paper, we introduce a new notion of curvature on the edges of a graph that is defined in terms of effective resistances. We call this the Ricci--Foster curvature. We study the Ricci flow resulting from this curvature. We prove the existence of solutions to Ricci flow on short time intervals,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dawkins, Aleyah Gupta, Vishal Kempton, Mark Linz, William Quail, Jeremy Richman, Harry Stier, Zachary |
description | In this paper, we introduce a new notion of curvature on the edges of a graph that is defined in terms of effective resistances. We call this the Ricci--Foster curvature. We study the Ricci flow resulting from this curvature. We prove the existence of solutions to Ricci flow on short time intervals, and prove that Ricci flow preserves graphs with nonnegative (resp. positive) curvature. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2937452192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937452192</sourcerecordid><originalsourceid>FETCH-proquest_journals_29374521923</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOxw4F9JLY-0oojiLewnhUlNqU3Opvr4OPoDTP3z_QmSoVFnsK8SVyJl7KSXuatRaZUIe4Oqt9eCG8IYwQhfNdGdwMTyAnCOb_IsgEntOZrS0EUtnBqb817XYnk-346WYYnjOxKntwxzHL7XYqLrSWDao_rs-Mj4yyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937452192</pqid></control><display><type>article</type><title>A Ricci flow on graphs from effective resistance</title><source>Free E- Journals</source><creator>Dawkins, Aleyah ; Gupta, Vishal ; Kempton, Mark ; Linz, William ; Quail, Jeremy ; Richman, Harry ; Stier, Zachary</creator><creatorcontrib>Dawkins, Aleyah ; Gupta, Vishal ; Kempton, Mark ; Linz, William ; Quail, Jeremy ; Richman, Harry ; Stier, Zachary</creatorcontrib><description>In this paper, we introduce a new notion of curvature on the edges of a graph that is defined in terms of effective resistances. We call this the Ricci--Foster curvature. We study the Ricci flow resulting from this curvature. We prove the existence of solutions to Ricci flow on short time intervals, and prove that Ricci flow preserves graphs with nonnegative (resp. positive) curvature.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Curvature ; Graph theory ; Graphs</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Dawkins, Aleyah</creatorcontrib><creatorcontrib>Gupta, Vishal</creatorcontrib><creatorcontrib>Kempton, Mark</creatorcontrib><creatorcontrib>Linz, William</creatorcontrib><creatorcontrib>Quail, Jeremy</creatorcontrib><creatorcontrib>Richman, Harry</creatorcontrib><creatorcontrib>Stier, Zachary</creatorcontrib><title>A Ricci flow on graphs from effective resistance</title><title>arXiv.org</title><description>In this paper, we introduce a new notion of curvature on the edges of a graph that is defined in terms of effective resistances. We call this the Ricci--Foster curvature. We study the Ricci flow resulting from this curvature. We prove the existence of solutions to Ricci flow on short time intervals, and prove that Ricci flow preserves graphs with nonnegative (resp. positive) curvature.</description><subject>Curvature</subject><subject>Graph theory</subject><subject>Graphs</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOxw4F9JLY-0oojiLewnhUlNqU3Opvr4OPoDTP3z_QmSoVFnsK8SVyJl7KSXuatRaZUIe4Oqt9eCG8IYwQhfNdGdwMTyAnCOb_IsgEntOZrS0EUtnBqb817XYnk-346WYYnjOxKntwxzHL7XYqLrSWDao_rs-Mj4yyA</recordid><startdate>20240302</startdate><enddate>20240302</enddate><creator>Dawkins, Aleyah</creator><creator>Gupta, Vishal</creator><creator>Kempton, Mark</creator><creator>Linz, William</creator><creator>Quail, Jeremy</creator><creator>Richman, Harry</creator><creator>Stier, Zachary</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240302</creationdate><title>A Ricci flow on graphs from effective resistance</title><author>Dawkins, Aleyah ; Gupta, Vishal ; Kempton, Mark ; Linz, William ; Quail, Jeremy ; Richman, Harry ; Stier, Zachary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29374521923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Curvature</topic><topic>Graph theory</topic><topic>Graphs</topic><toplevel>online_resources</toplevel><creatorcontrib>Dawkins, Aleyah</creatorcontrib><creatorcontrib>Gupta, Vishal</creatorcontrib><creatorcontrib>Kempton, Mark</creatorcontrib><creatorcontrib>Linz, William</creatorcontrib><creatorcontrib>Quail, Jeremy</creatorcontrib><creatorcontrib>Richman, Harry</creatorcontrib><creatorcontrib>Stier, Zachary</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawkins, Aleyah</au><au>Gupta, Vishal</au><au>Kempton, Mark</au><au>Linz, William</au><au>Quail, Jeremy</au><au>Richman, Harry</au><au>Stier, Zachary</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Ricci flow on graphs from effective resistance</atitle><jtitle>arXiv.org</jtitle><date>2024-03-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we introduce a new notion of curvature on the edges of a graph that is defined in terms of effective resistances. We call this the Ricci--Foster curvature. We study the Ricci flow resulting from this curvature. We prove the existence of solutions to Ricci flow on short time intervals, and prove that Ricci flow preserves graphs with nonnegative (resp. positive) curvature.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2937452192 |
source | Free E- Journals |
subjects | Curvature Graph theory Graphs |
title | A Ricci flow on graphs from effective resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Ricci%20flow%20on%20graphs%20from%20effective%20resistance&rft.jtitle=arXiv.org&rft.au=Dawkins,%20Aleyah&rft.date=2024-03-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2937452192%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937452192&rft_id=info:pmid/&rfr_iscdi=true |