A Ricci flow on graphs from effective resistance

In this paper, we introduce a new notion of curvature on the edges of a graph that is defined in terms of effective resistances. We call this the Ricci--Foster curvature. We study the Ricci flow resulting from this curvature. We prove the existence of solutions to Ricci flow on short time intervals,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Dawkins, Aleyah, Gupta, Vishal, Kempton, Mark, Linz, William, Quail, Jeremy, Richman, Harry, Stier, Zachary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dawkins, Aleyah
Gupta, Vishal
Kempton, Mark
Linz, William
Quail, Jeremy
Richman, Harry
Stier, Zachary
description In this paper, we introduce a new notion of curvature on the edges of a graph that is defined in terms of effective resistances. We call this the Ricci--Foster curvature. We study the Ricci flow resulting from this curvature. We prove the existence of solutions to Ricci flow on short time intervals, and prove that Ricci flow preserves graphs with nonnegative (resp. positive) curvature.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2937452192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937452192</sourcerecordid><originalsourceid>FETCH-proquest_journals_29374521923</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOxw4F9JLY-0oojiLewnhUlNqU3Opvr4OPoDTP3z_QmSoVFnsK8SVyJl7KSXuatRaZUIe4Oqt9eCG8IYwQhfNdGdwMTyAnCOb_IsgEntOZrS0EUtnBqb817XYnk-346WYYnjOxKntwxzHL7XYqLrSWDao_rs-Mj4yyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937452192</pqid></control><display><type>article</type><title>A Ricci flow on graphs from effective resistance</title><source>Free E- Journals</source><creator>Dawkins, Aleyah ; Gupta, Vishal ; Kempton, Mark ; Linz, William ; Quail, Jeremy ; Richman, Harry ; Stier, Zachary</creator><creatorcontrib>Dawkins, Aleyah ; Gupta, Vishal ; Kempton, Mark ; Linz, William ; Quail, Jeremy ; Richman, Harry ; Stier, Zachary</creatorcontrib><description>In this paper, we introduce a new notion of curvature on the edges of a graph that is defined in terms of effective resistances. We call this the Ricci--Foster curvature. We study the Ricci flow resulting from this curvature. We prove the existence of solutions to Ricci flow on short time intervals, and prove that Ricci flow preserves graphs with nonnegative (resp. positive) curvature.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Curvature ; Graph theory ; Graphs</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Dawkins, Aleyah</creatorcontrib><creatorcontrib>Gupta, Vishal</creatorcontrib><creatorcontrib>Kempton, Mark</creatorcontrib><creatorcontrib>Linz, William</creatorcontrib><creatorcontrib>Quail, Jeremy</creatorcontrib><creatorcontrib>Richman, Harry</creatorcontrib><creatorcontrib>Stier, Zachary</creatorcontrib><title>A Ricci flow on graphs from effective resistance</title><title>arXiv.org</title><description>In this paper, we introduce a new notion of curvature on the edges of a graph that is defined in terms of effective resistances. We call this the Ricci--Foster curvature. We study the Ricci flow resulting from this curvature. We prove the existence of solutions to Ricci flow on short time intervals, and prove that Ricci flow preserves graphs with nonnegative (resp. positive) curvature.</description><subject>Curvature</subject><subject>Graph theory</subject><subject>Graphs</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOxw4F9JLY-0oojiLewnhUlNqU3Opvr4OPoDTP3z_QmSoVFnsK8SVyJl7KSXuatRaZUIe4Oqt9eCG8IYwQhfNdGdwMTyAnCOb_IsgEntOZrS0EUtnBqb817XYnk-346WYYnjOxKntwxzHL7XYqLrSWDao_rs-Mj4yyA</recordid><startdate>20240302</startdate><enddate>20240302</enddate><creator>Dawkins, Aleyah</creator><creator>Gupta, Vishal</creator><creator>Kempton, Mark</creator><creator>Linz, William</creator><creator>Quail, Jeremy</creator><creator>Richman, Harry</creator><creator>Stier, Zachary</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240302</creationdate><title>A Ricci flow on graphs from effective resistance</title><author>Dawkins, Aleyah ; Gupta, Vishal ; Kempton, Mark ; Linz, William ; Quail, Jeremy ; Richman, Harry ; Stier, Zachary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29374521923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Curvature</topic><topic>Graph theory</topic><topic>Graphs</topic><toplevel>online_resources</toplevel><creatorcontrib>Dawkins, Aleyah</creatorcontrib><creatorcontrib>Gupta, Vishal</creatorcontrib><creatorcontrib>Kempton, Mark</creatorcontrib><creatorcontrib>Linz, William</creatorcontrib><creatorcontrib>Quail, Jeremy</creatorcontrib><creatorcontrib>Richman, Harry</creatorcontrib><creatorcontrib>Stier, Zachary</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawkins, Aleyah</au><au>Gupta, Vishal</au><au>Kempton, Mark</au><au>Linz, William</au><au>Quail, Jeremy</au><au>Richman, Harry</au><au>Stier, Zachary</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Ricci flow on graphs from effective resistance</atitle><jtitle>arXiv.org</jtitle><date>2024-03-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we introduce a new notion of curvature on the edges of a graph that is defined in terms of effective resistances. We call this the Ricci--Foster curvature. We study the Ricci flow resulting from this curvature. We prove the existence of solutions to Ricci flow on short time intervals, and prove that Ricci flow preserves graphs with nonnegative (resp. positive) curvature.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2937452192
source Free E- Journals
subjects Curvature
Graph theory
Graphs
title A Ricci flow on graphs from effective resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Ricci%20flow%20on%20graphs%20from%20effective%20resistance&rft.jtitle=arXiv.org&rft.au=Dawkins,%20Aleyah&rft.date=2024-03-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2937452192%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937452192&rft_id=info:pmid/&rfr_iscdi=true