TroubleLLM: Align to Red Team Expert

Large Language Models (LLMs) become the start-of-the-art solutions for a variety of natural language tasks and are integrated into real-world applications. However, LLMs can be potentially harmful in manifesting undesirable safety issues like social biases and toxic content. It is imperative to asse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Xu, Zhuoer, Zhang, Jianping, Cui, Shiwen, Meng, Changhua, Wang, Weiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Xu, Zhuoer
Zhang, Jianping
Cui, Shiwen
Meng, Changhua
Wang, Weiqiang
description Large Language Models (LLMs) become the start-of-the-art solutions for a variety of natural language tasks and are integrated into real-world applications. However, LLMs can be potentially harmful in manifesting undesirable safety issues like social biases and toxic content. It is imperative to assess its safety issues before deployment. However, the quality and diversity of test prompts generated by existing methods are still far from satisfactory. Not only are these methods labor-intensive and require large budget costs, but the controllability of test prompt generation is lacking for the specific testing domain of LLM applications. With the idea of LLM for LLM testing, we propose the first LLM, called TroubleLLM, to generate controllable test prompts on LLM safety issues. Extensive experiments and human evaluation illustrate the superiority of TroubleLLM on generation quality and generation controllability.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2937451919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937451919</sourcerecordid><originalsourceid>FETCH-proquest_journals_29374519193</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQCSnKL03KSfXx8bVScMzJTM9TKMlXCEpNUQhJTcxVcK0oSC0q4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNLY3MTU0NLQ0tj4lQBAFNTLZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937451919</pqid></control><display><type>article</type><title>TroubleLLM: Align to Red Team Expert</title><source>Free E- Journals</source><creator>Xu, Zhuoer ; Zhang, Jianping ; Cui, Shiwen ; Meng, Changhua ; Wang, Weiqiang</creator><creatorcontrib>Xu, Zhuoer ; Zhang, Jianping ; Cui, Shiwen ; Meng, Changhua ; Wang, Weiqiang</creatorcontrib><description>Large Language Models (LLMs) become the start-of-the-art solutions for a variety of natural language tasks and are integrated into real-world applications. However, LLMs can be potentially harmful in manifesting undesirable safety issues like social biases and toxic content. It is imperative to assess its safety issues before deployment. However, the quality and diversity of test prompts generated by existing methods are still far from satisfactory. Not only are these methods labor-intensive and require large budget costs, but the controllability of test prompt generation is lacking for the specific testing domain of LLM applications. With the idea of LLM for LLM testing, we propose the first LLM, called TroubleLLM, to generate controllable test prompts on LLM safety issues. Extensive experiments and human evaluation illustrate the superiority of TroubleLLM on generation quality and generation controllability.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Controllability ; Human bias ; Large language models ; Safety</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Xu, Zhuoer</creatorcontrib><creatorcontrib>Zhang, Jianping</creatorcontrib><creatorcontrib>Cui, Shiwen</creatorcontrib><creatorcontrib>Meng, Changhua</creatorcontrib><creatorcontrib>Wang, Weiqiang</creatorcontrib><title>TroubleLLM: Align to Red Team Expert</title><title>arXiv.org</title><description>Large Language Models (LLMs) become the start-of-the-art solutions for a variety of natural language tasks and are integrated into real-world applications. However, LLMs can be potentially harmful in manifesting undesirable safety issues like social biases and toxic content. It is imperative to assess its safety issues before deployment. However, the quality and diversity of test prompts generated by existing methods are still far from satisfactory. Not only are these methods labor-intensive and require large budget costs, but the controllability of test prompt generation is lacking for the specific testing domain of LLM applications. With the idea of LLM for LLM testing, we propose the first LLM, called TroubleLLM, to generate controllable test prompts on LLM safety issues. Extensive experiments and human evaluation illustrate the superiority of TroubleLLM on generation quality and generation controllability.</description><subject>Controllability</subject><subject>Human bias</subject><subject>Large language models</subject><subject>Safety</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQCSnKL03KSfXx8bVScMzJTM9TKMlXCEpNUQhJTcxVcK0oSC0q4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNLY3MTU0NLQ0tj4lQBAFNTLZE</recordid><startdate>20240228</startdate><enddate>20240228</enddate><creator>Xu, Zhuoer</creator><creator>Zhang, Jianping</creator><creator>Cui, Shiwen</creator><creator>Meng, Changhua</creator><creator>Wang, Weiqiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240228</creationdate><title>TroubleLLM: Align to Red Team Expert</title><author>Xu, Zhuoer ; Zhang, Jianping ; Cui, Shiwen ; Meng, Changhua ; Wang, Weiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29374519193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Controllability</topic><topic>Human bias</topic><topic>Large language models</topic><topic>Safety</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zhuoer</creatorcontrib><creatorcontrib>Zhang, Jianping</creatorcontrib><creatorcontrib>Cui, Shiwen</creatorcontrib><creatorcontrib>Meng, Changhua</creatorcontrib><creatorcontrib>Wang, Weiqiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zhuoer</au><au>Zhang, Jianping</au><au>Cui, Shiwen</au><au>Meng, Changhua</au><au>Wang, Weiqiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>TroubleLLM: Align to Red Team Expert</atitle><jtitle>arXiv.org</jtitle><date>2024-02-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Large Language Models (LLMs) become the start-of-the-art solutions for a variety of natural language tasks and are integrated into real-world applications. However, LLMs can be potentially harmful in manifesting undesirable safety issues like social biases and toxic content. It is imperative to assess its safety issues before deployment. However, the quality and diversity of test prompts generated by existing methods are still far from satisfactory. Not only are these methods labor-intensive and require large budget costs, but the controllability of test prompt generation is lacking for the specific testing domain of LLM applications. With the idea of LLM for LLM testing, we propose the first LLM, called TroubleLLM, to generate controllable test prompts on LLM safety issues. Extensive experiments and human evaluation illustrate the superiority of TroubleLLM on generation quality and generation controllability.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2937451919
source Free E- Journals
subjects Controllability
Human bias
Large language models
Safety
title TroubleLLM: Align to Red Team Expert
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=TroubleLLM:%20Align%20to%20Red%20Team%20Expert&rft.jtitle=arXiv.org&rft.au=Xu,%20Zhuoer&rft.date=2024-02-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2937451919%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937451919&rft_id=info:pmid/&rfr_iscdi=true