Soft Reasoning on Uncertain Knowledge Graphs

The study of machine learning-based logical query-answering enables reasoning with large-scale and incomplete knowledge graphs. This paper further advances this line of research by considering the uncertainty in the knowledge. The uncertain nature of knowledge is widely observed in the real world, b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Weizhi Fei, Wang, Zihao, Yin, Hang, Yang, Duan, Tong, Hanghang, Song, Yangqiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Weizhi Fei
Wang, Zihao
Yin, Hang
Yang, Duan
Tong, Hanghang
Song, Yangqiu
description The study of machine learning-based logical query-answering enables reasoning with large-scale and incomplete knowledge graphs. This paper further advances this line of research by considering the uncertainty in the knowledge. The uncertain nature of knowledge is widely observed in the real world, but \textit{does not} align seamlessly with the first-order logic underpinning existing studies. To bridge this gap, we study the setting of soft queries on uncertain knowledge, which is motivated by the establishment of soft constraint programming. We further propose an ML-based approach with both forward inference and backward calibration to answer soft queries on large-scale, incomplete, and uncertain knowledge graphs. Theoretical discussions present that our methods share the same complexity as state-of-the-art inference algorithms for first-order queries. Empirical results justify the superior performance of our approach against previous ML-based methods with number embedding extensions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2937450526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937450526</sourcerecordid><originalsourceid>FETCH-proquest_journals_29374505263</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCc5PK1EISk0szs_LzEtXyM9TCM1LTi0qSczMU_DOyy_PSU1JT1VwL0osyCjmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I0tjcxNTA1MjM2PiVAEAcVMxdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937450526</pqid></control><display><type>article</type><title>Soft Reasoning on Uncertain Knowledge Graphs</title><source>Free E- Journals</source><creator>Weizhi Fei ; Wang, Zihao ; Yin, Hang ; Yang, Duan ; Tong, Hanghang ; Song, Yangqiu</creator><creatorcontrib>Weizhi Fei ; Wang, Zihao ; Yin, Hang ; Yang, Duan ; Tong, Hanghang ; Song, Yangqiu</creatorcontrib><description>The study of machine learning-based logical query-answering enables reasoning with large-scale and incomplete knowledge graphs. This paper further advances this line of research by considering the uncertainty in the knowledge. The uncertain nature of knowledge is widely observed in the real world, but \textit{does not} align seamlessly with the first-order logic underpinning existing studies. To bridge this gap, we study the setting of soft queries on uncertain knowledge, which is motivated by the establishment of soft constraint programming. We further propose an ML-based approach with both forward inference and backward calibration to answer soft queries on large-scale, incomplete, and uncertain knowledge graphs. Theoretical discussions present that our methods share the same complexity as state-of-the-art inference algorithms for first-order queries. Empirical results justify the superior performance of our approach against previous ML-based methods with number embedding extensions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Graphs ; Inference ; Knowledge representation ; Machine learning ; Queries ; Reasoning</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Weizhi Fei</creatorcontrib><creatorcontrib>Wang, Zihao</creatorcontrib><creatorcontrib>Yin, Hang</creatorcontrib><creatorcontrib>Yang, Duan</creatorcontrib><creatorcontrib>Tong, Hanghang</creatorcontrib><creatorcontrib>Song, Yangqiu</creatorcontrib><title>Soft Reasoning on Uncertain Knowledge Graphs</title><title>arXiv.org</title><description>The study of machine learning-based logical query-answering enables reasoning with large-scale and incomplete knowledge graphs. This paper further advances this line of research by considering the uncertainty in the knowledge. The uncertain nature of knowledge is widely observed in the real world, but \textit{does not} align seamlessly with the first-order logic underpinning existing studies. To bridge this gap, we study the setting of soft queries on uncertain knowledge, which is motivated by the establishment of soft constraint programming. We further propose an ML-based approach with both forward inference and backward calibration to answer soft queries on large-scale, incomplete, and uncertain knowledge graphs. Theoretical discussions present that our methods share the same complexity as state-of-the-art inference algorithms for first-order queries. Empirical results justify the superior performance of our approach against previous ML-based methods with number embedding extensions.</description><subject>Algorithms</subject><subject>Graphs</subject><subject>Inference</subject><subject>Knowledge representation</subject><subject>Machine learning</subject><subject>Queries</subject><subject>Reasoning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCc5PK1EISk0szs_LzEtXyM9TCM1LTi0qSczMU_DOyy_PSU1JT1VwL0osyCjmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I0tjcxNTA1MjM2PiVAEAcVMxdA</recordid><startdate>20240303</startdate><enddate>20240303</enddate><creator>Weizhi Fei</creator><creator>Wang, Zihao</creator><creator>Yin, Hang</creator><creator>Yang, Duan</creator><creator>Tong, Hanghang</creator><creator>Song, Yangqiu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240303</creationdate><title>Soft Reasoning on Uncertain Knowledge Graphs</title><author>Weizhi Fei ; Wang, Zihao ; Yin, Hang ; Yang, Duan ; Tong, Hanghang ; Song, Yangqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29374505263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Graphs</topic><topic>Inference</topic><topic>Knowledge representation</topic><topic>Machine learning</topic><topic>Queries</topic><topic>Reasoning</topic><toplevel>online_resources</toplevel><creatorcontrib>Weizhi Fei</creatorcontrib><creatorcontrib>Wang, Zihao</creatorcontrib><creatorcontrib>Yin, Hang</creatorcontrib><creatorcontrib>Yang, Duan</creatorcontrib><creatorcontrib>Tong, Hanghang</creatorcontrib><creatorcontrib>Song, Yangqiu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weizhi Fei</au><au>Wang, Zihao</au><au>Yin, Hang</au><au>Yang, Duan</au><au>Tong, Hanghang</au><au>Song, Yangqiu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Soft Reasoning on Uncertain Knowledge Graphs</atitle><jtitle>arXiv.org</jtitle><date>2024-03-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The study of machine learning-based logical query-answering enables reasoning with large-scale and incomplete knowledge graphs. This paper further advances this line of research by considering the uncertainty in the knowledge. The uncertain nature of knowledge is widely observed in the real world, but \textit{does not} align seamlessly with the first-order logic underpinning existing studies. To bridge this gap, we study the setting of soft queries on uncertain knowledge, which is motivated by the establishment of soft constraint programming. We further propose an ML-based approach with both forward inference and backward calibration to answer soft queries on large-scale, incomplete, and uncertain knowledge graphs. Theoretical discussions present that our methods share the same complexity as state-of-the-art inference algorithms for first-order queries. Empirical results justify the superior performance of our approach against previous ML-based methods with number embedding extensions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2937450526
source Free E- Journals
subjects Algorithms
Graphs
Inference
Knowledge representation
Machine learning
Queries
Reasoning
title Soft Reasoning on Uncertain Knowledge Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Soft%20Reasoning%20on%20Uncertain%20Knowledge%20Graphs&rft.jtitle=arXiv.org&rft.au=Weizhi%20Fei&rft.date=2024-03-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2937450526%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937450526&rft_id=info:pmid/&rfr_iscdi=true