EAGLE: Eigen Aggregation Learning for Object-Centric Unsupervised Semantic Segmentation
Semantic segmentation has innately relied on extensive pixel-level annotated data, leading to the emergence of unsupervised methodologies. Among them, leveraging self-supervised Vision Transformers for unsupervised semantic segmentation (USS) has been making steady progress with expressive deep feat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kim, Chanyoung Han, Woojung Ju, Dayun Hwang, Seong Jae |
description | Semantic segmentation has innately relied on extensive pixel-level annotated data, leading to the emergence of unsupervised methodologies. Among them, leveraging self-supervised Vision Transformers for unsupervised semantic segmentation (USS) has been making steady progress with expressive deep features. Yet, for semantically segmenting images with complex objects, a predominant challenge remains: the lack of explicit object-level semantic encoding in patch-level features. This technical limitation often leads to inadequate segmentation of complex objects with diverse structures. To address this gap, we present a novel approach, EAGLE, which emphasizes object-centric representation learning for unsupervised semantic segmentation. Specifically, we introduce EiCue, a spectral technique providing semantic and structural cues through an eigenbasis derived from the semantic similarity matrix of deep image features and color affinity from an image. Further, by incorporating our object-centric contrastive loss with EiCue, we guide our model to learn object-level representations with intra- and inter-image object-feature consistency, thereby enhancing semantic accuracy. Extensive experiments on COCO-Stuff, Cityscapes, and Potsdam-3 datasets demonstrate the state-of-the-art USS results of EAGLE with accurate and consistent semantic segmentation across complex scenes. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2937450222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937450222</sourcerecordid><originalsourceid>FETCH-proquest_journals_29374502223</originalsourceid><addsrcrecordid>eNqNi9EKgjAYRkcQJOU7DLoW7J9mdSey6kLooqJLWfY7JrnZNnv-JHqArj4453wTEgBjq2iTAMxI6FwbxzGsM0hTFpAbzw8l31GuJGqaS2lRCq-MpiUKq5WWtDGWnu4t1j4qUHuranrVbujRvpXDBz1jJ7Qf6RllNwbf-4JMG_F0GP52TpZ7fimOUW_Na0Dnq9YMVo-qgi3LkjQGAPZf9QHSuUD-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937450222</pqid></control><display><type>article</type><title>EAGLE: Eigen Aggregation Learning for Object-Centric Unsupervised Semantic Segmentation</title><source>Free E- Journals</source><creator>Kim, Chanyoung ; Han, Woojung ; Ju, Dayun ; Hwang, Seong Jae</creator><creatorcontrib>Kim, Chanyoung ; Han, Woojung ; Ju, Dayun ; Hwang, Seong Jae</creatorcontrib><description>Semantic segmentation has innately relied on extensive pixel-level annotated data, leading to the emergence of unsupervised methodologies. Among them, leveraging self-supervised Vision Transformers for unsupervised semantic segmentation (USS) has been making steady progress with expressive deep features. Yet, for semantically segmenting images with complex objects, a predominant challenge remains: the lack of explicit object-level semantic encoding in patch-level features. This technical limitation often leads to inadequate segmentation of complex objects with diverse structures. To address this gap, we present a novel approach, EAGLE, which emphasizes object-centric representation learning for unsupervised semantic segmentation. Specifically, we introduce EiCue, a spectral technique providing semantic and structural cues through an eigenbasis derived from the semantic similarity matrix of deep image features and color affinity from an image. Further, by incorporating our object-centric contrastive loss with EiCue, we guide our model to learn object-level representations with intra- and inter-image object-feature consistency, thereby enhancing semantic accuracy. Extensive experiments on COCO-Stuff, Cityscapes, and Potsdam-3 datasets demonstrate the state-of-the-art USS results of EAGLE with accurate and consistent semantic segmentation across complex scenes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Image enhancement ; Image segmentation ; Learning ; Representations ; Semantic segmentation ; Semantics ; Spectral methods</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kim, Chanyoung</creatorcontrib><creatorcontrib>Han, Woojung</creatorcontrib><creatorcontrib>Ju, Dayun</creatorcontrib><creatorcontrib>Hwang, Seong Jae</creatorcontrib><title>EAGLE: Eigen Aggregation Learning for Object-Centric Unsupervised Semantic Segmentation</title><title>arXiv.org</title><description>Semantic segmentation has innately relied on extensive pixel-level annotated data, leading to the emergence of unsupervised methodologies. Among them, leveraging self-supervised Vision Transformers for unsupervised semantic segmentation (USS) has been making steady progress with expressive deep features. Yet, for semantically segmenting images with complex objects, a predominant challenge remains: the lack of explicit object-level semantic encoding in patch-level features. This technical limitation often leads to inadequate segmentation of complex objects with diverse structures. To address this gap, we present a novel approach, EAGLE, which emphasizes object-centric representation learning for unsupervised semantic segmentation. Specifically, we introduce EiCue, a spectral technique providing semantic and structural cues through an eigenbasis derived from the semantic similarity matrix of deep image features and color affinity from an image. Further, by incorporating our object-centric contrastive loss with EiCue, we guide our model to learn object-level representations with intra- and inter-image object-feature consistency, thereby enhancing semantic accuracy. Extensive experiments on COCO-Stuff, Cityscapes, and Potsdam-3 datasets demonstrate the state-of-the-art USS results of EAGLE with accurate and consistent semantic segmentation across complex scenes.</description><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Learning</subject><subject>Representations</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Spectral methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi9EKgjAYRkcQJOU7DLoW7J9mdSey6kLooqJLWfY7JrnZNnv-JHqArj4453wTEgBjq2iTAMxI6FwbxzGsM0hTFpAbzw8l31GuJGqaS2lRCq-MpiUKq5WWtDGWnu4t1j4qUHuranrVbujRvpXDBz1jJ7Qf6RllNwbf-4JMG_F0GP52TpZ7fimOUW_Na0Dnq9YMVo-qgi3LkjQGAPZf9QHSuUD-</recordid><startdate>20240405</startdate><enddate>20240405</enddate><creator>Kim, Chanyoung</creator><creator>Han, Woojung</creator><creator>Ju, Dayun</creator><creator>Hwang, Seong Jae</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240405</creationdate><title>EAGLE: Eigen Aggregation Learning for Object-Centric Unsupervised Semantic Segmentation</title><author>Kim, Chanyoung ; Han, Woojung ; Ju, Dayun ; Hwang, Seong Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29374502223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Learning</topic><topic>Representations</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Spectral methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Chanyoung</creatorcontrib><creatorcontrib>Han, Woojung</creatorcontrib><creatorcontrib>Ju, Dayun</creatorcontrib><creatorcontrib>Hwang, Seong Jae</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Chanyoung</au><au>Han, Woojung</au><au>Ju, Dayun</au><au>Hwang, Seong Jae</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>EAGLE: Eigen Aggregation Learning for Object-Centric Unsupervised Semantic Segmentation</atitle><jtitle>arXiv.org</jtitle><date>2024-04-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Semantic segmentation has innately relied on extensive pixel-level annotated data, leading to the emergence of unsupervised methodologies. Among them, leveraging self-supervised Vision Transformers for unsupervised semantic segmentation (USS) has been making steady progress with expressive deep features. Yet, for semantically segmenting images with complex objects, a predominant challenge remains: the lack of explicit object-level semantic encoding in patch-level features. This technical limitation often leads to inadequate segmentation of complex objects with diverse structures. To address this gap, we present a novel approach, EAGLE, which emphasizes object-centric representation learning for unsupervised semantic segmentation. Specifically, we introduce EiCue, a spectral technique providing semantic and structural cues through an eigenbasis derived from the semantic similarity matrix of deep image features and color affinity from an image. Further, by incorporating our object-centric contrastive loss with EiCue, we guide our model to learn object-level representations with intra- and inter-image object-feature consistency, thereby enhancing semantic accuracy. Extensive experiments on COCO-Stuff, Cityscapes, and Potsdam-3 datasets demonstrate the state-of-the-art USS results of EAGLE with accurate and consistent semantic segmentation across complex scenes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2937450222 |
source | Free E- Journals |
subjects | Image enhancement Image segmentation Learning Representations Semantic segmentation Semantics Spectral methods |
title | EAGLE: Eigen Aggregation Learning for Object-Centric Unsupervised Semantic Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A17%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=EAGLE:%20Eigen%20Aggregation%20Learning%20for%20Object-Centric%20Unsupervised%20Semantic%20Segmentation&rft.jtitle=arXiv.org&rft.au=Kim,%20Chanyoung&rft.date=2024-04-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2937450222%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937450222&rft_id=info:pmid/&rfr_iscdi=true |