The migrant perspective: Measuring migrants' movements and interests using geolocated tweets

Geolocated social media data hold a hitherto untapped potential for exploring the relationship between user mobility and their interests at a large scale. Using geolocated Twitter data from Nigeria, we provide a feasibility study that demonstrates how the linkage of (1) a trajectory analysis of Twit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Population space and place 2024-03, Vol.30 (2), p.n/a
Hauptverfasser: Mast, Johannes, Sapena, Marta, Mühlbauer, Martin, Biewer, Carolin, Taubenböck, Hannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Population space and place
container_volume 30
creator Mast, Johannes
Sapena, Marta
Mühlbauer, Martin
Biewer, Carolin
Taubenböck, Hannes
description Geolocated social media data hold a hitherto untapped potential for exploring the relationship between user mobility and their interests at a large scale. Using geolocated Twitter data from Nigeria, we provide a feasibility study that demonstrates how the linkage of (1) a trajectory analysis of Twitter users' geolocation and (2) natural language processing of Twitter users' text content can reveal information about the interests of migrants. After identifying migrants via a trajectory analysis, we train a language model to automatically detect the topics of the migrants' tweets. Biases of manual labelling are circumvented by learning community‐defined topics from a Nigerian web forum. Results suggest that differences in users' mobility correlate with varying interests in several topics, most notably religion. We find that Twitter data can be a flexible source for exploring the link between users' mobility and interests in large‐scale analyses of urban populations. The joint use of spatial techniques and text analysis enables migration researchers to (a) study migrant perspectives in greater detail than is possible with census data and (b) at a larger scale than is feasible with interviews. Thereby, it provides a valuable complement to interviews, surveys and censuses, and holds a large potential for further research.
doi_str_mv 10.1002/psp.2732
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2937450041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937450041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2882-57e85e65f895103cffe6fc279b67e54d77a7c11d829dee0398aa77975f459eb13</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AgLHvSyNckmm403KX5BxYL1KCHNTuqW7ofJbkvfxmfxycxa9eYpE-bHzPBH6JTgEcGYXja-GVGR0D00IJyxOGOc7v_VjB2iI--XQaaYywF6nb1BVBYLp6s2asD5BkxbrOEqegTtO1dUi9-2P4_Keg0lhDLSVf75UVQtOPDh2_keLqBe1Ua3kEftBqD1x-jA6pWHk593iF5ub2bj-3jydPcwvp7EhmYZjbmAjEPKbSY5wYmxFlJrqJDzVABnuRBaGELyjMocACcy01oIKbhlXMKcJEN0tpvbuPq9CxepZd25KqxUVCaCcYxZry52yrjaewdWNa4otdsqglUfngrhqT68QOMd3RQr2P7r1PR5-u2_AERScl0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937450041</pqid></control><display><type>article</type><title>The migrant perspective: Measuring migrants' movements and interests using geolocated tweets</title><source>Sociological Abstracts</source><source>Access via Wiley Online Library</source><creator>Mast, Johannes ; Sapena, Marta ; Mühlbauer, Martin ; Biewer, Carolin ; Taubenböck, Hannes</creator><creatorcontrib>Mast, Johannes ; Sapena, Marta ; Mühlbauer, Martin ; Biewer, Carolin ; Taubenböck, Hannes</creatorcontrib><description>Geolocated social media data hold a hitherto untapped potential for exploring the relationship between user mobility and their interests at a large scale. Using geolocated Twitter data from Nigeria, we provide a feasibility study that demonstrates how the linkage of (1) a trajectory analysis of Twitter users' geolocation and (2) natural language processing of Twitter users' text content can reveal information about the interests of migrants. After identifying migrants via a trajectory analysis, we train a language model to automatically detect the topics of the migrants' tweets. Biases of manual labelling are circumvented by learning community‐defined topics from a Nigerian web forum. Results suggest that differences in users' mobility correlate with varying interests in several topics, most notably religion. We find that Twitter data can be a flexible source for exploring the link between users' mobility and interests in large‐scale analyses of urban populations. The joint use of spatial techniques and text analysis enables migration researchers to (a) study migrant perspectives in greater detail than is possible with census data and (b) at a larger scale than is feasible with interviews. Thereby, it provides a valuable complement to interviews, surveys and censuses, and holds a large potential for further research.</description><identifier>ISSN: 1544-8444</identifier><identifier>EISSN: 1544-8452</identifier><identifier>DOI: 10.1002/psp.2732</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Censuses ; domain adaptation ; human migration ; Migrants ; Migration ; Mobility ; NLP ; Social media ; Social networks ; trajectories ; Urban population</subject><ispartof>Population space and place, 2024-03, Vol.30 (2), p.n/a</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2882-57e85e65f895103cffe6fc279b67e54d77a7c11d829dee0398aa77975f459eb13</cites><orcidid>0000-0002-3797-1586 ; 0000-0001-6595-5834 ; 0000-0003-3849-1143 ; 0000-0003-4360-9126 ; 0000-0003-3283-319X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpsp.2732$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpsp.2732$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,33774,45574,45575</link.rule.ids></links><search><creatorcontrib>Mast, Johannes</creatorcontrib><creatorcontrib>Sapena, Marta</creatorcontrib><creatorcontrib>Mühlbauer, Martin</creatorcontrib><creatorcontrib>Biewer, Carolin</creatorcontrib><creatorcontrib>Taubenböck, Hannes</creatorcontrib><title>The migrant perspective: Measuring migrants' movements and interests using geolocated tweets</title><title>Population space and place</title><description>Geolocated social media data hold a hitherto untapped potential for exploring the relationship between user mobility and their interests at a large scale. Using geolocated Twitter data from Nigeria, we provide a feasibility study that demonstrates how the linkage of (1) a trajectory analysis of Twitter users' geolocation and (2) natural language processing of Twitter users' text content can reveal information about the interests of migrants. After identifying migrants via a trajectory analysis, we train a language model to automatically detect the topics of the migrants' tweets. Biases of manual labelling are circumvented by learning community‐defined topics from a Nigerian web forum. Results suggest that differences in users' mobility correlate with varying interests in several topics, most notably religion. We find that Twitter data can be a flexible source for exploring the link between users' mobility and interests in large‐scale analyses of urban populations. The joint use of spatial techniques and text analysis enables migration researchers to (a) study migrant perspectives in greater detail than is possible with census data and (b) at a larger scale than is feasible with interviews. Thereby, it provides a valuable complement to interviews, surveys and censuses, and holds a large potential for further research.</description><subject>Censuses</subject><subject>domain adaptation</subject><subject>human migration</subject><subject>Migrants</subject><subject>Migration</subject><subject>Mobility</subject><subject>NLP</subject><subject>Social media</subject><subject>Social networks</subject><subject>trajectories</subject><subject>Urban population</subject><issn>1544-8444</issn><issn>1544-8452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>BHHNA</sourceid><recordid>eNp10M1KAzEQB_AgCtYq-AgLHvSyNckmm403KX5BxYL1KCHNTuqW7ofJbkvfxmfxycxa9eYpE-bHzPBH6JTgEcGYXja-GVGR0D00IJyxOGOc7v_VjB2iI--XQaaYywF6nb1BVBYLp6s2asD5BkxbrOEqegTtO1dUi9-2P4_Keg0lhDLSVf75UVQtOPDh2_keLqBe1Ua3kEftBqD1x-jA6pWHk593iF5ub2bj-3jydPcwvp7EhmYZjbmAjEPKbSY5wYmxFlJrqJDzVABnuRBaGELyjMocACcy01oIKbhlXMKcJEN0tpvbuPq9CxepZd25KqxUVCaCcYxZry52yrjaewdWNa4otdsqglUfngrhqT68QOMd3RQr2P7r1PR5-u2_AERScl0</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Mast, Johannes</creator><creator>Sapena, Marta</creator><creator>Mühlbauer, Martin</creator><creator>Biewer, Carolin</creator><creator>Taubenböck, Hannes</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope><orcidid>https://orcid.org/0000-0002-3797-1586</orcidid><orcidid>https://orcid.org/0000-0001-6595-5834</orcidid><orcidid>https://orcid.org/0000-0003-3849-1143</orcidid><orcidid>https://orcid.org/0000-0003-4360-9126</orcidid><orcidid>https://orcid.org/0000-0003-3283-319X</orcidid></search><sort><creationdate>202403</creationdate><title>The migrant perspective: Measuring migrants' movements and interests using geolocated tweets</title><author>Mast, Johannes ; Sapena, Marta ; Mühlbauer, Martin ; Biewer, Carolin ; Taubenböck, Hannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2882-57e85e65f895103cffe6fc279b67e54d77a7c11d829dee0398aa77975f459eb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Censuses</topic><topic>domain adaptation</topic><topic>human migration</topic><topic>Migrants</topic><topic>Migration</topic><topic>Mobility</topic><topic>NLP</topic><topic>Social media</topic><topic>Social networks</topic><topic>trajectories</topic><topic>Urban population</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mast, Johannes</creatorcontrib><creatorcontrib>Sapena, Marta</creatorcontrib><creatorcontrib>Mühlbauer, Martin</creatorcontrib><creatorcontrib>Biewer, Carolin</creatorcontrib><creatorcontrib>Taubenböck, Hannes</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Population space and place</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mast, Johannes</au><au>Sapena, Marta</au><au>Mühlbauer, Martin</au><au>Biewer, Carolin</au><au>Taubenböck, Hannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The migrant perspective: Measuring migrants' movements and interests using geolocated tweets</atitle><jtitle>Population space and place</jtitle><date>2024-03</date><risdate>2024</risdate><volume>30</volume><issue>2</issue><epage>n/a</epage><issn>1544-8444</issn><eissn>1544-8452</eissn><abstract>Geolocated social media data hold a hitherto untapped potential for exploring the relationship between user mobility and their interests at a large scale. Using geolocated Twitter data from Nigeria, we provide a feasibility study that demonstrates how the linkage of (1) a trajectory analysis of Twitter users' geolocation and (2) natural language processing of Twitter users' text content can reveal information about the interests of migrants. After identifying migrants via a trajectory analysis, we train a language model to automatically detect the topics of the migrants' tweets. Biases of manual labelling are circumvented by learning community‐defined topics from a Nigerian web forum. Results suggest that differences in users' mobility correlate with varying interests in several topics, most notably religion. We find that Twitter data can be a flexible source for exploring the link between users' mobility and interests in large‐scale analyses of urban populations. The joint use of spatial techniques and text analysis enables migration researchers to (a) study migrant perspectives in greater detail than is possible with census data and (b) at a larger scale than is feasible with interviews. Thereby, it provides a valuable complement to interviews, surveys and censuses, and holds a large potential for further research.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/psp.2732</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3797-1586</orcidid><orcidid>https://orcid.org/0000-0001-6595-5834</orcidid><orcidid>https://orcid.org/0000-0003-3849-1143</orcidid><orcidid>https://orcid.org/0000-0003-4360-9126</orcidid><orcidid>https://orcid.org/0000-0003-3283-319X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1544-8444
ispartof Population space and place, 2024-03, Vol.30 (2), p.n/a
issn 1544-8444
1544-8452
language eng
recordid cdi_proquest_journals_2937450041
source Sociological Abstracts; Access via Wiley Online Library
subjects Censuses
domain adaptation
human migration
Migrants
Migration
Mobility
NLP
Social media
Social networks
trajectories
Urban population
title The migrant perspective: Measuring migrants' movements and interests using geolocated tweets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20migrant%20perspective:%20Measuring%20migrants'%20movements%20and%C2%A0interests%20using%20geolocated%20tweets&rft.jtitle=Population%20space%20and%20place&rft.au=Mast,%20Johannes&rft.date=2024-03&rft.volume=30&rft.issue=2&rft.epage=n/a&rft.issn=1544-8444&rft.eissn=1544-8452&rft_id=info:doi/10.1002/psp.2732&rft_dat=%3Cproquest_cross%3E2937450041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937450041&rft_id=info:pmid/&rfr_iscdi=true