The migrant perspective: Measuring migrants' movements and interests using geolocated tweets
Geolocated social media data hold a hitherto untapped potential for exploring the relationship between user mobility and their interests at a large scale. Using geolocated Twitter data from Nigeria, we provide a feasibility study that demonstrates how the linkage of (1) a trajectory analysis of Twit...
Gespeichert in:
Veröffentlicht in: | Population space and place 2024-03, Vol.30 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Population space and place |
container_volume | 30 |
creator | Mast, Johannes Sapena, Marta Mühlbauer, Martin Biewer, Carolin Taubenböck, Hannes |
description | Geolocated social media data hold a hitherto untapped potential for exploring the relationship between user mobility and their interests at a large scale. Using geolocated Twitter data from Nigeria, we provide a feasibility study that demonstrates how the linkage of (1) a trajectory analysis of Twitter users' geolocation and (2) natural language processing of Twitter users' text content can reveal information about the interests of migrants. After identifying migrants via a trajectory analysis, we train a language model to automatically detect the topics of the migrants' tweets. Biases of manual labelling are circumvented by learning community‐defined topics from a Nigerian web forum. Results suggest that differences in users' mobility correlate with varying interests in several topics, most notably religion. We find that Twitter data can be a flexible source for exploring the link between users' mobility and interests in large‐scale analyses of urban populations. The joint use of spatial techniques and text analysis enables migration researchers to (a) study migrant perspectives in greater detail than is possible with census data and (b) at a larger scale than is feasible with interviews. Thereby, it provides a valuable complement to interviews, surveys and censuses, and holds a large potential for further research. |
doi_str_mv | 10.1002/psp.2732 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2937450041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937450041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2882-57e85e65f895103cffe6fc279b67e54d77a7c11d829dee0398aa77975f459eb13</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AgLHvSyNckmm403KX5BxYL1KCHNTuqW7ofJbkvfxmfxycxa9eYpE-bHzPBH6JTgEcGYXja-GVGR0D00IJyxOGOc7v_VjB2iI--XQaaYywF6nb1BVBYLp6s2asD5BkxbrOEqegTtO1dUi9-2P4_Keg0lhDLSVf75UVQtOPDh2_keLqBe1Ua3kEftBqD1x-jA6pWHk593iF5ub2bj-3jydPcwvp7EhmYZjbmAjEPKbSY5wYmxFlJrqJDzVABnuRBaGELyjMocACcy01oIKbhlXMKcJEN0tpvbuPq9CxepZd25KqxUVCaCcYxZry52yrjaewdWNa4otdsqglUfngrhqT68QOMd3RQr2P7r1PR5-u2_AERScl0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937450041</pqid></control><display><type>article</type><title>The migrant perspective: Measuring migrants' movements and interests using geolocated tweets</title><source>Sociological Abstracts</source><source>Access via Wiley Online Library</source><creator>Mast, Johannes ; Sapena, Marta ; Mühlbauer, Martin ; Biewer, Carolin ; Taubenböck, Hannes</creator><creatorcontrib>Mast, Johannes ; Sapena, Marta ; Mühlbauer, Martin ; Biewer, Carolin ; Taubenböck, Hannes</creatorcontrib><description>Geolocated social media data hold a hitherto untapped potential for exploring the relationship between user mobility and their interests at a large scale. Using geolocated Twitter data from Nigeria, we provide a feasibility study that demonstrates how the linkage of (1) a trajectory analysis of Twitter users' geolocation and (2) natural language processing of Twitter users' text content can reveal information about the interests of migrants. After identifying migrants via a trajectory analysis, we train a language model to automatically detect the topics of the migrants' tweets. Biases of manual labelling are circumvented by learning community‐defined topics from a Nigerian web forum. Results suggest that differences in users' mobility correlate with varying interests in several topics, most notably religion. We find that Twitter data can be a flexible source for exploring the link between users' mobility and interests in large‐scale analyses of urban populations. The joint use of spatial techniques and text analysis enables migration researchers to (a) study migrant perspectives in greater detail than is possible with census data and (b) at a larger scale than is feasible with interviews. Thereby, it provides a valuable complement to interviews, surveys and censuses, and holds a large potential for further research.</description><identifier>ISSN: 1544-8444</identifier><identifier>EISSN: 1544-8452</identifier><identifier>DOI: 10.1002/psp.2732</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Censuses ; domain adaptation ; human migration ; Migrants ; Migration ; Mobility ; NLP ; Social media ; Social networks ; trajectories ; Urban population</subject><ispartof>Population space and place, 2024-03, Vol.30 (2), p.n/a</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2882-57e85e65f895103cffe6fc279b67e54d77a7c11d829dee0398aa77975f459eb13</cites><orcidid>0000-0002-3797-1586 ; 0000-0001-6595-5834 ; 0000-0003-3849-1143 ; 0000-0003-4360-9126 ; 0000-0003-3283-319X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpsp.2732$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpsp.2732$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,33774,45574,45575</link.rule.ids></links><search><creatorcontrib>Mast, Johannes</creatorcontrib><creatorcontrib>Sapena, Marta</creatorcontrib><creatorcontrib>Mühlbauer, Martin</creatorcontrib><creatorcontrib>Biewer, Carolin</creatorcontrib><creatorcontrib>Taubenböck, Hannes</creatorcontrib><title>The migrant perspective: Measuring migrants' movements and interests using geolocated tweets</title><title>Population space and place</title><description>Geolocated social media data hold a hitherto untapped potential for exploring the relationship between user mobility and their interests at a large scale. Using geolocated Twitter data from Nigeria, we provide a feasibility study that demonstrates how the linkage of (1) a trajectory analysis of Twitter users' geolocation and (2) natural language processing of Twitter users' text content can reveal information about the interests of migrants. After identifying migrants via a trajectory analysis, we train a language model to automatically detect the topics of the migrants' tweets. Biases of manual labelling are circumvented by learning community‐defined topics from a Nigerian web forum. Results suggest that differences in users' mobility correlate with varying interests in several topics, most notably religion. We find that Twitter data can be a flexible source for exploring the link between users' mobility and interests in large‐scale analyses of urban populations. The joint use of spatial techniques and text analysis enables migration researchers to (a) study migrant perspectives in greater detail than is possible with census data and (b) at a larger scale than is feasible with interviews. Thereby, it provides a valuable complement to interviews, surveys and censuses, and holds a large potential for further research.</description><subject>Censuses</subject><subject>domain adaptation</subject><subject>human migration</subject><subject>Migrants</subject><subject>Migration</subject><subject>Mobility</subject><subject>NLP</subject><subject>Social media</subject><subject>Social networks</subject><subject>trajectories</subject><subject>Urban population</subject><issn>1544-8444</issn><issn>1544-8452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>BHHNA</sourceid><recordid>eNp10M1KAzEQB_AgCtYq-AgLHvSyNckmm403KX5BxYL1KCHNTuqW7ofJbkvfxmfxycxa9eYpE-bHzPBH6JTgEcGYXja-GVGR0D00IJyxOGOc7v_VjB2iI--XQaaYywF6nb1BVBYLp6s2asD5BkxbrOEqegTtO1dUi9-2P4_Keg0lhDLSVf75UVQtOPDh2_keLqBe1Ua3kEftBqD1x-jA6pWHk593iF5ub2bj-3jydPcwvp7EhmYZjbmAjEPKbSY5wYmxFlJrqJDzVABnuRBaGELyjMocACcy01oIKbhlXMKcJEN0tpvbuPq9CxepZd25KqxUVCaCcYxZry52yrjaewdWNa4otdsqglUfngrhqT68QOMd3RQr2P7r1PR5-u2_AERScl0</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Mast, Johannes</creator><creator>Sapena, Marta</creator><creator>Mühlbauer, Martin</creator><creator>Biewer, Carolin</creator><creator>Taubenböck, Hannes</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope><orcidid>https://orcid.org/0000-0002-3797-1586</orcidid><orcidid>https://orcid.org/0000-0001-6595-5834</orcidid><orcidid>https://orcid.org/0000-0003-3849-1143</orcidid><orcidid>https://orcid.org/0000-0003-4360-9126</orcidid><orcidid>https://orcid.org/0000-0003-3283-319X</orcidid></search><sort><creationdate>202403</creationdate><title>The migrant perspective: Measuring migrants' movements and interests using geolocated tweets</title><author>Mast, Johannes ; Sapena, Marta ; Mühlbauer, Martin ; Biewer, Carolin ; Taubenböck, Hannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2882-57e85e65f895103cffe6fc279b67e54d77a7c11d829dee0398aa77975f459eb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Censuses</topic><topic>domain adaptation</topic><topic>human migration</topic><topic>Migrants</topic><topic>Migration</topic><topic>Mobility</topic><topic>NLP</topic><topic>Social media</topic><topic>Social networks</topic><topic>trajectories</topic><topic>Urban population</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mast, Johannes</creatorcontrib><creatorcontrib>Sapena, Marta</creatorcontrib><creatorcontrib>Mühlbauer, Martin</creatorcontrib><creatorcontrib>Biewer, Carolin</creatorcontrib><creatorcontrib>Taubenböck, Hannes</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Population space and place</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mast, Johannes</au><au>Sapena, Marta</au><au>Mühlbauer, Martin</au><au>Biewer, Carolin</au><au>Taubenböck, Hannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The migrant perspective: Measuring migrants' movements and interests using geolocated tweets</atitle><jtitle>Population space and place</jtitle><date>2024-03</date><risdate>2024</risdate><volume>30</volume><issue>2</issue><epage>n/a</epage><issn>1544-8444</issn><eissn>1544-8452</eissn><abstract>Geolocated social media data hold a hitherto untapped potential for exploring the relationship between user mobility and their interests at a large scale. Using geolocated Twitter data from Nigeria, we provide a feasibility study that demonstrates how the linkage of (1) a trajectory analysis of Twitter users' geolocation and (2) natural language processing of Twitter users' text content can reveal information about the interests of migrants. After identifying migrants via a trajectory analysis, we train a language model to automatically detect the topics of the migrants' tweets. Biases of manual labelling are circumvented by learning community‐defined topics from a Nigerian web forum. Results suggest that differences in users' mobility correlate with varying interests in several topics, most notably religion. We find that Twitter data can be a flexible source for exploring the link between users' mobility and interests in large‐scale analyses of urban populations. The joint use of spatial techniques and text analysis enables migration researchers to (a) study migrant perspectives in greater detail than is possible with census data and (b) at a larger scale than is feasible with interviews. Thereby, it provides a valuable complement to interviews, surveys and censuses, and holds a large potential for further research.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/psp.2732</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3797-1586</orcidid><orcidid>https://orcid.org/0000-0001-6595-5834</orcidid><orcidid>https://orcid.org/0000-0003-3849-1143</orcidid><orcidid>https://orcid.org/0000-0003-4360-9126</orcidid><orcidid>https://orcid.org/0000-0003-3283-319X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1544-8444 |
ispartof | Population space and place, 2024-03, Vol.30 (2), p.n/a |
issn | 1544-8444 1544-8452 |
language | eng |
recordid | cdi_proquest_journals_2937450041 |
source | Sociological Abstracts; Access via Wiley Online Library |
subjects | Censuses domain adaptation human migration Migrants Migration Mobility NLP Social media Social networks trajectories Urban population |
title | The migrant perspective: Measuring migrants' movements and interests using geolocated tweets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20migrant%20perspective:%20Measuring%20migrants'%20movements%20and%C2%A0interests%20using%20geolocated%20tweets&rft.jtitle=Population%20space%20and%20place&rft.au=Mast,%20Johannes&rft.date=2024-03&rft.volume=30&rft.issue=2&rft.epage=n/a&rft.issn=1544-8444&rft.eissn=1544-8452&rft_id=info:doi/10.1002/psp.2732&rft_dat=%3Cproquest_cross%3E2937450041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937450041&rft_id=info:pmid/&rfr_iscdi=true |