Structuring Interdigitated Back Contact Solar Cells Using the Enhanced Oxidation Characteristics Under Laser‐Doped Back Surface Field Regions
Interdigitated back contact (IBC) architecture can yield among the highest silicon wafer‐based solar cell conversion efficiencies. Since both polarities are realized on the rear side, there is a definite need for a patterning step. Some of the common patterning techniques involve photolithography, i...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2024-03, Vol.221 (5), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 221 |
creator | Kuruganti, Vaibhav V. Isabella, Olindo Mihailetchi, Valentin D. |
description | Interdigitated back contact (IBC) architecture can yield among the highest silicon wafer‐based solar cell conversion efficiencies. Since both polarities are realized on the rear side, there is a definite need for a patterning step. Some of the common patterning techniques involve photolithography, inkjet patterning, and laser ablation. This work introduces a novel patterning technique for structuring the rear side of IBC solar cells using the enhanced oxidation characteristics under the locally laser‐doped n++ back surface field (BSF) regions with high‐phosphorous surface concentrations. Phosphosilicate glass layers deposited via POCl3 diffusion serve as a precursor layer for the formation of local heavily laser‐doped n++ BSF regions. The laser‐doped n++ BSF regions exhibit a 2.6‐fold increase in oxide thickness compared to the nonlaser‐doped n+ BSF regions after undergoing high‐temperature wet thermal oxidation. The utilization of oxide thickness selectivity under laser‐doped and nonlaser‐doped regions serves two purposes in the context of the IBC solar cell, first patterning rear side and second acting as a masking layer for the subsequent boron diffusion. Proof‐of‐concept solar cells are fabricated using this novel patterning technique with a mean conversion efficiency of 20.41%.
An industrially viable novel patterning technique for fabrication of interdigitated back contact solar cells using the enhanced oxidation characteristics under laser‐doped back surface field regions is studied. The utilization of oxide thickness selectivity under laser‐doped and nonlaser‐doped regions serves two purposes, first patterning rear side and second acting as a masking layer for the subsequent boron diffusion. |
doi_str_mv | 10.1002/pssa.202300820 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2937430873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937430873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3120-be94db4dffba91dbe5df490437c69d511d77b06b1467772c841fca18f818022b3</originalsourceid><addsrcrecordid>eNqFkLFOwzAURSMEEqWwMltiTnl23DgZS6BQqVIRoXPk2E7rEpxiO4Ju_AF8I19CqkIZmd4dzrlPukFwjmGAAcjl2jk-IEAigITAQdDDSUzCOMLp4T4DHAcnzq0A6JAy3As-cm9b4VurzQJNjFdW6oX23CuJrrh4QlljPBce5U3NLcpUXTs0d1vaLxW6MUtuRMfO3rTkXjcGZUtuO0FZ7bwWHWyksmjKnbJf75_Xzfq3OW9txYVCY61qiR7UorPdaXBU8dqps5_bD-bjm8fsLpzObifZaBqKCBMIS5VSWVJZVSVPsSzVUFY0BRoxEadyiLFkrIS4xDRmjBGRUFwJjpMqwQkQUkb94GLXu7bNS6ucL1ZNa033siBpxGgECYs6arCjhG2cs6oq1lY_c7spMBTb0Yvt6MV-9E5Id8KrrtXmH7q4z_PRn_sNjmGJCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937430873</pqid></control><display><type>article</type><title>Structuring Interdigitated Back Contact Solar Cells Using the Enhanced Oxidation Characteristics Under Laser‐Doped Back Surface Field Regions</title><source>Wiley Journals</source><creator>Kuruganti, Vaibhav V. ; Isabella, Olindo ; Mihailetchi, Valentin D.</creator><creatorcontrib>Kuruganti, Vaibhav V. ; Isabella, Olindo ; Mihailetchi, Valentin D.</creatorcontrib><description>Interdigitated back contact (IBC) architecture can yield among the highest silicon wafer‐based solar cell conversion efficiencies. Since both polarities are realized on the rear side, there is a definite need for a patterning step. Some of the common patterning techniques involve photolithography, inkjet patterning, and laser ablation. This work introduces a novel patterning technique for structuring the rear side of IBC solar cells using the enhanced oxidation characteristics under the locally laser‐doped n++ back surface field (BSF) regions with high‐phosphorous surface concentrations. Phosphosilicate glass layers deposited via POCl3 diffusion serve as a precursor layer for the formation of local heavily laser‐doped n++ BSF regions. The laser‐doped n++ BSF regions exhibit a 2.6‐fold increase in oxide thickness compared to the nonlaser‐doped n+ BSF regions after undergoing high‐temperature wet thermal oxidation. The utilization of oxide thickness selectivity under laser‐doped and nonlaser‐doped regions serves two purposes in the context of the IBC solar cell, first patterning rear side and second acting as a masking layer for the subsequent boron diffusion. Proof‐of‐concept solar cells are fabricated using this novel patterning technique with a mean conversion efficiency of 20.41%.
An industrially viable novel patterning technique for fabrication of interdigitated back contact solar cells using the enhanced oxidation characteristics under laser‐doped back surface field regions is studied. The utilization of oxide thickness selectivity under laser‐doped and nonlaser‐doped regions serves two purposes, first patterning rear side and second acting as a masking layer for the subsequent boron diffusion.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202300820</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Diffusion layers ; interdigitated back contact solar cells ; Laser ablation ; laser doping ; Lasers ; Oxidation ; patterning techniques ; Photolithography ; Photovoltaic cells ; Silicon wafers ; SiO2 as diffusion barriers ; Solar cells ; Thermal utilization ; Thickness</subject><ispartof>Physica status solidi. A, Applications and materials science, 2024-03, Vol.221 (5), p.n/a</ispartof><rights>2023 The Authors. physica status solidi (a) applications and materials science published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3120-be94db4dffba91dbe5df490437c69d511d77b06b1467772c841fca18f818022b3</cites><orcidid>0000-0001-8650-9657 ; 0000-0001-7673-0163 ; 0000-0001-9275-1650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202300820$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202300820$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kuruganti, Vaibhav V.</creatorcontrib><creatorcontrib>Isabella, Olindo</creatorcontrib><creatorcontrib>Mihailetchi, Valentin D.</creatorcontrib><title>Structuring Interdigitated Back Contact Solar Cells Using the Enhanced Oxidation Characteristics Under Laser‐Doped Back Surface Field Regions</title><title>Physica status solidi. A, Applications and materials science</title><description>Interdigitated back contact (IBC) architecture can yield among the highest silicon wafer‐based solar cell conversion efficiencies. Since both polarities are realized on the rear side, there is a definite need for a patterning step. Some of the common patterning techniques involve photolithography, inkjet patterning, and laser ablation. This work introduces a novel patterning technique for structuring the rear side of IBC solar cells using the enhanced oxidation characteristics under the locally laser‐doped n++ back surface field (BSF) regions with high‐phosphorous surface concentrations. Phosphosilicate glass layers deposited via POCl3 diffusion serve as a precursor layer for the formation of local heavily laser‐doped n++ BSF regions. The laser‐doped n++ BSF regions exhibit a 2.6‐fold increase in oxide thickness compared to the nonlaser‐doped n+ BSF regions after undergoing high‐temperature wet thermal oxidation. The utilization of oxide thickness selectivity under laser‐doped and nonlaser‐doped regions serves two purposes in the context of the IBC solar cell, first patterning rear side and second acting as a masking layer for the subsequent boron diffusion. Proof‐of‐concept solar cells are fabricated using this novel patterning technique with a mean conversion efficiency of 20.41%.
An industrially viable novel patterning technique for fabrication of interdigitated back contact solar cells using the enhanced oxidation characteristics under laser‐doped back surface field regions is studied. The utilization of oxide thickness selectivity under laser‐doped and nonlaser‐doped regions serves two purposes, first patterning rear side and second acting as a masking layer for the subsequent boron diffusion.</description><subject>Diffusion layers</subject><subject>interdigitated back contact solar cells</subject><subject>Laser ablation</subject><subject>laser doping</subject><subject>Lasers</subject><subject>Oxidation</subject><subject>patterning techniques</subject><subject>Photolithography</subject><subject>Photovoltaic cells</subject><subject>Silicon wafers</subject><subject>SiO2 as diffusion barriers</subject><subject>Solar cells</subject><subject>Thermal utilization</subject><subject>Thickness</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLFOwzAURSMEEqWwMltiTnl23DgZS6BQqVIRoXPk2E7rEpxiO4Ju_AF8I19CqkIZmd4dzrlPukFwjmGAAcjl2jk-IEAigITAQdDDSUzCOMLp4T4DHAcnzq0A6JAy3As-cm9b4VurzQJNjFdW6oX23CuJrrh4QlljPBce5U3NLcpUXTs0d1vaLxW6MUtuRMfO3rTkXjcGZUtuO0FZ7bwWHWyksmjKnbJf75_Xzfq3OW9txYVCY61qiR7UorPdaXBU8dqps5_bD-bjm8fsLpzObifZaBqKCBMIS5VSWVJZVSVPsSzVUFY0BRoxEadyiLFkrIS4xDRmjBGRUFwJjpMqwQkQUkb94GLXu7bNS6ucL1ZNa033siBpxGgECYs6arCjhG2cs6oq1lY_c7spMBTb0Yvt6MV-9E5Id8KrrtXmH7q4z_PRn_sNjmGJCQ</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Kuruganti, Vaibhav V.</creator><creator>Isabella, Olindo</creator><creator>Mihailetchi, Valentin D.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8650-9657</orcidid><orcidid>https://orcid.org/0000-0001-7673-0163</orcidid><orcidid>https://orcid.org/0000-0001-9275-1650</orcidid></search><sort><creationdate>202403</creationdate><title>Structuring Interdigitated Back Contact Solar Cells Using the Enhanced Oxidation Characteristics Under Laser‐Doped Back Surface Field Regions</title><author>Kuruganti, Vaibhav V. ; Isabella, Olindo ; Mihailetchi, Valentin D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3120-be94db4dffba91dbe5df490437c69d511d77b06b1467772c841fca18f818022b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Diffusion layers</topic><topic>interdigitated back contact solar cells</topic><topic>Laser ablation</topic><topic>laser doping</topic><topic>Lasers</topic><topic>Oxidation</topic><topic>patterning techniques</topic><topic>Photolithography</topic><topic>Photovoltaic cells</topic><topic>Silicon wafers</topic><topic>SiO2 as diffusion barriers</topic><topic>Solar cells</topic><topic>Thermal utilization</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuruganti, Vaibhav V.</creatorcontrib><creatorcontrib>Isabella, Olindo</creatorcontrib><creatorcontrib>Mihailetchi, Valentin D.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuruganti, Vaibhav V.</au><au>Isabella, Olindo</au><au>Mihailetchi, Valentin D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structuring Interdigitated Back Contact Solar Cells Using the Enhanced Oxidation Characteristics Under Laser‐Doped Back Surface Field Regions</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2024-03</date><risdate>2024</risdate><volume>221</volume><issue>5</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Interdigitated back contact (IBC) architecture can yield among the highest silicon wafer‐based solar cell conversion efficiencies. Since both polarities are realized on the rear side, there is a definite need for a patterning step. Some of the common patterning techniques involve photolithography, inkjet patterning, and laser ablation. This work introduces a novel patterning technique for structuring the rear side of IBC solar cells using the enhanced oxidation characteristics under the locally laser‐doped n++ back surface field (BSF) regions with high‐phosphorous surface concentrations. Phosphosilicate glass layers deposited via POCl3 diffusion serve as a precursor layer for the formation of local heavily laser‐doped n++ BSF regions. The laser‐doped n++ BSF regions exhibit a 2.6‐fold increase in oxide thickness compared to the nonlaser‐doped n+ BSF regions after undergoing high‐temperature wet thermal oxidation. The utilization of oxide thickness selectivity under laser‐doped and nonlaser‐doped regions serves two purposes in the context of the IBC solar cell, first patterning rear side and second acting as a masking layer for the subsequent boron diffusion. Proof‐of‐concept solar cells are fabricated using this novel patterning technique with a mean conversion efficiency of 20.41%.
An industrially viable novel patterning technique for fabrication of interdigitated back contact solar cells using the enhanced oxidation characteristics under laser‐doped back surface field regions is studied. The utilization of oxide thickness selectivity under laser‐doped and nonlaser‐doped regions serves two purposes, first patterning rear side and second acting as a masking layer for the subsequent boron diffusion.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202300820</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8650-9657</orcidid><orcidid>https://orcid.org/0000-0001-7673-0163</orcidid><orcidid>https://orcid.org/0000-0001-9275-1650</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2024-03, Vol.221 (5), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2937430873 |
source | Wiley Journals |
subjects | Diffusion layers interdigitated back contact solar cells Laser ablation laser doping Lasers Oxidation patterning techniques Photolithography Photovoltaic cells Silicon wafers SiO2 as diffusion barriers Solar cells Thermal utilization Thickness |
title | Structuring Interdigitated Back Contact Solar Cells Using the Enhanced Oxidation Characteristics Under Laser‐Doped Back Surface Field Regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structuring%20Interdigitated%20Back%20Contact%20Solar%20Cells%20Using%20the%20Enhanced%20Oxidation%20Characteristics%20Under%20Laser%E2%80%90Doped%20Back%20Surface%20Field%20Regions&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Kuruganti,%20Vaibhav%20V.&rft.date=2024-03&rft.volume=221&rft.issue=5&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202300820&rft_dat=%3Cproquest_cross%3E2937430873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937430873&rft_id=info:pmid/&rfr_iscdi=true |