Enhancing the durability of Pt nanoparticles for water electrolysis using ultrathin SiO2 layers

Extending the lifetime of electrocatalytic materials is a major challenge in electrocatalysis. Here, we employ atomic layer deposition (ALD) to coat the surface of carbon black supported platinum nanoparticles (Pt/CB) with an ultra-thin layer of silicon dioxide (SiO2) to prevent deactivation of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2024-03, Vol.14 (5), p.1328-1335
Hauptverfasser: Li, Ming, Saedy, Saeed, Fu, Shilong, Stellema, Teise, Kortlever, Ruud, J Ruud van Ommen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1335
container_issue 5
container_start_page 1328
container_title Catalysis science & technology
container_volume 14
creator Li, Ming
Saedy, Saeed
Fu, Shilong
Stellema, Teise
Kortlever, Ruud
J Ruud van Ommen
description Extending the lifetime of electrocatalytic materials is a major challenge in electrocatalysis. Here, we employ atomic layer deposition (ALD) to coat the surface of carbon black supported platinum nanoparticles (Pt/CB) with an ultra-thin layer of silicon dioxide (SiO2) to prevent deactivation of the catalyst during H2 evolution. Our results show that after an accelerated durability test (ADT) the current density at −0.2 V vs. reversible hydrogen electrode (RHE) of the unprotected Pt/CB catalyst was reduced by 34%. By contrast, after coating the Pt/CB catalyst with 2 SiO2 ALD cycles, the current density at the same potential was reduced by 7% after the ADT procedure, whereas when the Pt/CB sample was coated with 5 SiO2 ALD cycles, the current density was reduced by only 2% after the ADT. Characterization of the Pt particles after electrochemical testing shows that the average particle size of the uncoated Pt/CB catalyst increases by roughly 16% after the ADT, whereas it only increases by 3% for the Pt/CB catalyst coated with 5 cycles of SiO2 ALD. In addition, the coating also strongly reduces the detachment of Pt nanoparticles, as shown by a strong decrease in the Pt concentration in the electrolyte after the ADT. However, 20 cycles of SiO2 ALD coating results in an over-thick coating that has an inhibitory effect on the catalytic activity. In summary, we demonstrate that only a few cycles of SiO2 ALD can strongly improve the stability of Pt catalyst for the hydrogen evolution reaction.
doi_str_mv 10.1039/d3cy00996c
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2937324424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937324424</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-c64942e885c475dfbd5ebdd462dce24ed8928838bcfd8037ba9ddcf12c67c08d3</originalsourceid><addsrcrecordid>eNo9jk1LxDAYhIMouKx78RcEPFfz1TY5yrJ-wMIK6rmkyRubJaQ1SZH-e1cU5zJzeWYGoWtKbinh6s5ysxCiVGPO0IoRISrRNvT8P9f8Em1yPpKThKJEshXqdnHQ0fj4gcsA2M5J9z74suDR4ZeCo47jpFPxJkDGbkz4SxdIGAKYksawZJ_xnH_4OZSky-AjfvUHhoNeIOUrdOF0yLD58zV6f9i9bZ-q_eHxeXu_ryZGValMI5RgIGVtTj-t620NvbWiYdYAE2ClYlJy2RtnJeFtr5W1xlFmmtYQafka3fz2Tmn8nCGX7jjOKZ4mO6Z4y5kQTPBvDn5YUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937324424</pqid></control><display><type>article</type><title>Enhancing the durability of Pt nanoparticles for water electrolysis using ultrathin SiO2 layers</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Ming ; Saedy, Saeed ; Fu, Shilong ; Stellema, Teise ; Kortlever, Ruud ; J Ruud van Ommen</creator><creatorcontrib>Li, Ming ; Saedy, Saeed ; Fu, Shilong ; Stellema, Teise ; Kortlever, Ruud ; J Ruud van Ommen</creatorcontrib><description>Extending the lifetime of electrocatalytic materials is a major challenge in electrocatalysis. Here, we employ atomic layer deposition (ALD) to coat the surface of carbon black supported platinum nanoparticles (Pt/CB) with an ultra-thin layer of silicon dioxide (SiO2) to prevent deactivation of the catalyst during H2 evolution. Our results show that after an accelerated durability test (ADT) the current density at −0.2 V vs. reversible hydrogen electrode (RHE) of the unprotected Pt/CB catalyst was reduced by 34%. By contrast, after coating the Pt/CB catalyst with 2 SiO2 ALD cycles, the current density at the same potential was reduced by 7% after the ADT procedure, whereas when the Pt/CB sample was coated with 5 SiO2 ALD cycles, the current density was reduced by only 2% after the ADT. Characterization of the Pt particles after electrochemical testing shows that the average particle size of the uncoated Pt/CB catalyst increases by roughly 16% after the ADT, whereas it only increases by 3% for the Pt/CB catalyst coated with 5 cycles of SiO2 ALD. In addition, the coating also strongly reduces the detachment of Pt nanoparticles, as shown by a strong decrease in the Pt concentration in the electrolyte after the ADT. However, 20 cycles of SiO2 ALD coating results in an over-thick coating that has an inhibitory effect on the catalytic activity. In summary, we demonstrate that only a few cycles of SiO2 ALD can strongly improve the stability of Pt catalyst for the hydrogen evolution reaction.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/d3cy00996c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Accelerated tests ; Atomic layer epitaxy ; Carbon black ; Catalysts ; Catalytic activity ; Coating ; Current density ; Durability ; Electrolysis ; Hydrogen evolution reactions ; Nanoparticles ; Platinum ; Silicon dioxide</subject><ispartof>Catalysis science &amp; technology, 2024-03, Vol.14 (5), p.1328-1335</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Saedy, Saeed</creatorcontrib><creatorcontrib>Fu, Shilong</creatorcontrib><creatorcontrib>Stellema, Teise</creatorcontrib><creatorcontrib>Kortlever, Ruud</creatorcontrib><creatorcontrib>J Ruud van Ommen</creatorcontrib><title>Enhancing the durability of Pt nanoparticles for water electrolysis using ultrathin SiO2 layers</title><title>Catalysis science &amp; technology</title><description>Extending the lifetime of electrocatalytic materials is a major challenge in electrocatalysis. Here, we employ atomic layer deposition (ALD) to coat the surface of carbon black supported platinum nanoparticles (Pt/CB) with an ultra-thin layer of silicon dioxide (SiO2) to prevent deactivation of the catalyst during H2 evolution. Our results show that after an accelerated durability test (ADT) the current density at −0.2 V vs. reversible hydrogen electrode (RHE) of the unprotected Pt/CB catalyst was reduced by 34%. By contrast, after coating the Pt/CB catalyst with 2 SiO2 ALD cycles, the current density at the same potential was reduced by 7% after the ADT procedure, whereas when the Pt/CB sample was coated with 5 SiO2 ALD cycles, the current density was reduced by only 2% after the ADT. Characterization of the Pt particles after electrochemical testing shows that the average particle size of the uncoated Pt/CB catalyst increases by roughly 16% after the ADT, whereas it only increases by 3% for the Pt/CB catalyst coated with 5 cycles of SiO2 ALD. In addition, the coating also strongly reduces the detachment of Pt nanoparticles, as shown by a strong decrease in the Pt concentration in the electrolyte after the ADT. However, 20 cycles of SiO2 ALD coating results in an over-thick coating that has an inhibitory effect on the catalytic activity. In summary, we demonstrate that only a few cycles of SiO2 ALD can strongly improve the stability of Pt catalyst for the hydrogen evolution reaction.</description><subject>Accelerated tests</subject><subject>Atomic layer epitaxy</subject><subject>Carbon black</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Coating</subject><subject>Current density</subject><subject>Durability</subject><subject>Electrolysis</subject><subject>Hydrogen evolution reactions</subject><subject>Nanoparticles</subject><subject>Platinum</subject><subject>Silicon dioxide</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9jk1LxDAYhIMouKx78RcEPFfz1TY5yrJ-wMIK6rmkyRubJaQ1SZH-e1cU5zJzeWYGoWtKbinh6s5ysxCiVGPO0IoRISrRNvT8P9f8Em1yPpKThKJEshXqdnHQ0fj4gcsA2M5J9z74suDR4ZeCo47jpFPxJkDGbkz4SxdIGAKYksawZJ_xnH_4OZSky-AjfvUHhoNeIOUrdOF0yLD58zV6f9i9bZ-q_eHxeXu_ryZGValMI5RgIGVtTj-t620NvbWiYdYAE2ClYlJy2RtnJeFtr5W1xlFmmtYQafka3fz2Tmn8nCGX7jjOKZ4mO6Z4y5kQTPBvDn5YUA</recordid><startdate>20240305</startdate><enddate>20240305</enddate><creator>Li, Ming</creator><creator>Saedy, Saeed</creator><creator>Fu, Shilong</creator><creator>Stellema, Teise</creator><creator>Kortlever, Ruud</creator><creator>J Ruud van Ommen</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20240305</creationdate><title>Enhancing the durability of Pt nanoparticles for water electrolysis using ultrathin SiO2 layers</title><author>Li, Ming ; Saedy, Saeed ; Fu, Shilong ; Stellema, Teise ; Kortlever, Ruud ; J Ruud van Ommen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-c64942e885c475dfbd5ebdd462dce24ed8928838bcfd8037ba9ddcf12c67c08d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accelerated tests</topic><topic>Atomic layer epitaxy</topic><topic>Carbon black</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Coating</topic><topic>Current density</topic><topic>Durability</topic><topic>Electrolysis</topic><topic>Hydrogen evolution reactions</topic><topic>Nanoparticles</topic><topic>Platinum</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Saedy, Saeed</creatorcontrib><creatorcontrib>Fu, Shilong</creatorcontrib><creatorcontrib>Stellema, Teise</creatorcontrib><creatorcontrib>Kortlever, Ruud</creatorcontrib><creatorcontrib>J Ruud van Ommen</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ming</au><au>Saedy, Saeed</au><au>Fu, Shilong</au><au>Stellema, Teise</au><au>Kortlever, Ruud</au><au>J Ruud van Ommen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the durability of Pt nanoparticles for water electrolysis using ultrathin SiO2 layers</atitle><jtitle>Catalysis science &amp; technology</jtitle><date>2024-03-05</date><risdate>2024</risdate><volume>14</volume><issue>5</issue><spage>1328</spage><epage>1335</epage><pages>1328-1335</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>Extending the lifetime of electrocatalytic materials is a major challenge in electrocatalysis. Here, we employ atomic layer deposition (ALD) to coat the surface of carbon black supported platinum nanoparticles (Pt/CB) with an ultra-thin layer of silicon dioxide (SiO2) to prevent deactivation of the catalyst during H2 evolution. Our results show that after an accelerated durability test (ADT) the current density at −0.2 V vs. reversible hydrogen electrode (RHE) of the unprotected Pt/CB catalyst was reduced by 34%. By contrast, after coating the Pt/CB catalyst with 2 SiO2 ALD cycles, the current density at the same potential was reduced by 7% after the ADT procedure, whereas when the Pt/CB sample was coated with 5 SiO2 ALD cycles, the current density was reduced by only 2% after the ADT. Characterization of the Pt particles after electrochemical testing shows that the average particle size of the uncoated Pt/CB catalyst increases by roughly 16% after the ADT, whereas it only increases by 3% for the Pt/CB catalyst coated with 5 cycles of SiO2 ALD. In addition, the coating also strongly reduces the detachment of Pt nanoparticles, as shown by a strong decrease in the Pt concentration in the electrolyte after the ADT. However, 20 cycles of SiO2 ALD coating results in an over-thick coating that has an inhibitory effect on the catalytic activity. In summary, we demonstrate that only a few cycles of SiO2 ALD can strongly improve the stability of Pt catalyst for the hydrogen evolution reaction.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cy00996c</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2024-03, Vol.14 (5), p.1328-1335
issn 2044-4753
2044-4761
language eng
recordid cdi_proquest_journals_2937324424
source Royal Society Of Chemistry Journals 2008-
subjects Accelerated tests
Atomic layer epitaxy
Carbon black
Catalysts
Catalytic activity
Coating
Current density
Durability
Electrolysis
Hydrogen evolution reactions
Nanoparticles
Platinum
Silicon dioxide
title Enhancing the durability of Pt nanoparticles for water electrolysis using ultrathin SiO2 layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20durability%20of%20Pt%20nanoparticles%20for%20water%20electrolysis%20using%20ultrathin%20SiO2%20layers&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Li,%20Ming&rft.date=2024-03-05&rft.volume=14&rft.issue=5&rft.spage=1328&rft.epage=1335&rft.pages=1328-1335&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/d3cy00996c&rft_dat=%3Cproquest%3E2937324424%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937324424&rft_id=info:pmid/&rfr_iscdi=true