Accelerating Proton and Electron Transfer Enables Highly Active Fe─N─C Catalyst for Electrochemical CO2 Reduction
Atomically dispersed Fe─N─C catalysts display great potential for efficient CO production in the field of electrochemical CO2 reduction (ECR), but still suffer from unsatisfactory activity limited by the slow proton and electron transfer during the ECR process. Here, a superior Fe─N─C electrocatalys...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-03, Vol.34 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Wang, Xiaoyu Wang, Cai Ren, Houan Lu, Jiaxin Chen, Bairong Liu, Yuping Guan, Qingxin Li, Wei |
description | Atomically dispersed Fe─N─C catalysts display great potential for efficient CO production in the field of electrochemical CO2 reduction (ECR), but still suffer from unsatisfactory activity limited by the slow proton and electron transfer during the ECR process. Here, a superior Fe─N─C electrocatalyst is designed by anchoring the individual FeN4 sites and Fe nanoparticles onto highly conductive carbon nanotubes. The resultant catalyst displays a commendable CO partial current density of 16.01 mA cm−2 with a turnover frequency of 3519.6 h−1 at −0.65 V in an H‐type cell, and also exhibits CO selectivity > 90% under high current density over 120 mA cm−2 in a flow cell. This remarkable activity exceeds a host of previously reported Fe─N─C catalysts. The findings indicate that the carbon nanotube facilitates CO production due to its strong capability of electron transport and charge transfer. In situ spectroscopic analysis, controlled experiments, and theoretical calculations reveal that Fe nanoparticles effectively promote water dissociation and the subsequent protonation step, accelerate the formation of *COOH intermediate, and thus greatly enhance the ECR activity.
Single‐atom Fe sites and Fe nanoparticles are constructed on highly conductive carbon nanotubes via a hydrogen‐assisted strategy for targeted enhancement of proton and electron transfer. The resultant catalyst exhibits remarkable activity in electrochemical CO2 reduction, surpassing most previously reported Fe─N─C catalysts. |
doi_str_mv | 10.1002/adfm.202311818 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2937308521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937308521</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2338-66605bbd94af9943b7f1014e5b456902398901e48485853ae15d0806a3e8eca33</originalsourceid><addsrcrecordid>eNo9kM9Kw0AQxhdRsFavnhc8p-7s5s_uscTWCtWKVPC2bJJJm7JN6iZRcvMhfEKfxJRqD8PMB983w_wIuQY2Asb4rcny7YgzLgAkyBMygBBCTzAuT48zvJ2Ti7reMAZRJPwBacdpihadaYpyRZ9d1VQlNWVGJxbTxvVi6UxZ5-jopDSJxZrOitXadnScNsUH0in-fH899RXT2DTGdnVD88r959M1bovUWBovOH3BrO1TVXlJznJja7z660PyOp0s45k3X9w_xOO5t-NCSC8MQxYkSaZ8kyvliyTKgYGPQeIHoeo_VVIxQF_6MpCBMAhBxiQLjUCJqRFiSG4Oe3euem-xbvSmal3Zn9RciUgwGXDoXerg-iwsdnrniq1xnQam91z1nqs-ctXju-njUYlfG5JvaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937308521</pqid></control><display><type>article</type><title>Accelerating Proton and Electron Transfer Enables Highly Active Fe─N─C Catalyst for Electrochemical CO2 Reduction</title><source>Wiley Online Library</source><creator>Wang, Xiaoyu ; Wang, Cai ; Ren, Houan ; Lu, Jiaxin ; Chen, Bairong ; Liu, Yuping ; Guan, Qingxin ; Li, Wei</creator><creatorcontrib>Wang, Xiaoyu ; Wang, Cai ; Ren, Houan ; Lu, Jiaxin ; Chen, Bairong ; Liu, Yuping ; Guan, Qingxin ; Li, Wei</creatorcontrib><description>Atomically dispersed Fe─N─C catalysts display great potential for efficient CO production in the field of electrochemical CO2 reduction (ECR), but still suffer from unsatisfactory activity limited by the slow proton and electron transfer during the ECR process. Here, a superior Fe─N─C electrocatalyst is designed by anchoring the individual FeN4 sites and Fe nanoparticles onto highly conductive carbon nanotubes. The resultant catalyst displays a commendable CO partial current density of 16.01 mA cm−2 with a turnover frequency of 3519.6 h−1 at −0.65 V in an H‐type cell, and also exhibits CO selectivity > 90% under high current density over 120 mA cm−2 in a flow cell. This remarkable activity exceeds a host of previously reported Fe─N─C catalysts. The findings indicate that the carbon nanotube facilitates CO production due to its strong capability of electron transport and charge transfer. In situ spectroscopic analysis, controlled experiments, and theoretical calculations reveal that Fe nanoparticles effectively promote water dissociation and the subsequent protonation step, accelerate the formation of *COOH intermediate, and thus greatly enhance the ECR activity.
Single‐atom Fe sites and Fe nanoparticles are constructed on highly conductive carbon nanotubes via a hydrogen‐assisted strategy for targeted enhancement of proton and electron transfer. The resultant catalyst exhibits remarkable activity in electrochemical CO2 reduction, surpassing most previously reported Fe─N─C catalysts.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202311818</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Carbon nanotubes ; Catalysts ; Charge transfer ; CO2 reduction ; Current density ; Electrocatalysts ; Electron transfer ; Electron transport ; Electrons ; Fe nanoparticles ; Fe─N─C ; Iron ; Nanoparticles ; Protonation ; Protons ; Reduction</subject><ispartof>Advanced functional materials, 2024-03, Vol.34 (10), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7287-8523 ; 0000-0003-0184-2173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202311818$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202311818$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Wang, Cai</creatorcontrib><creatorcontrib>Ren, Houan</creatorcontrib><creatorcontrib>Lu, Jiaxin</creatorcontrib><creatorcontrib>Chen, Bairong</creatorcontrib><creatorcontrib>Liu, Yuping</creatorcontrib><creatorcontrib>Guan, Qingxin</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><title>Accelerating Proton and Electron Transfer Enables Highly Active Fe─N─C Catalyst for Electrochemical CO2 Reduction</title><title>Advanced functional materials</title><description>Atomically dispersed Fe─N─C catalysts display great potential for efficient CO production in the field of electrochemical CO2 reduction (ECR), but still suffer from unsatisfactory activity limited by the slow proton and electron transfer during the ECR process. Here, a superior Fe─N─C electrocatalyst is designed by anchoring the individual FeN4 sites and Fe nanoparticles onto highly conductive carbon nanotubes. The resultant catalyst displays a commendable CO partial current density of 16.01 mA cm−2 with a turnover frequency of 3519.6 h−1 at −0.65 V in an H‐type cell, and also exhibits CO selectivity > 90% under high current density over 120 mA cm−2 in a flow cell. This remarkable activity exceeds a host of previously reported Fe─N─C catalysts. The findings indicate that the carbon nanotube facilitates CO production due to its strong capability of electron transport and charge transfer. In situ spectroscopic analysis, controlled experiments, and theoretical calculations reveal that Fe nanoparticles effectively promote water dissociation and the subsequent protonation step, accelerate the formation of *COOH intermediate, and thus greatly enhance the ECR activity.
Single‐atom Fe sites and Fe nanoparticles are constructed on highly conductive carbon nanotubes via a hydrogen‐assisted strategy for targeted enhancement of proton and electron transfer. The resultant catalyst exhibits remarkable activity in electrochemical CO2 reduction, surpassing most previously reported Fe─N─C catalysts.</description><subject>Carbon dioxide</subject><subject>Carbon nanotubes</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>CO2 reduction</subject><subject>Current density</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Electron transport</subject><subject>Electrons</subject><subject>Fe nanoparticles</subject><subject>Fe─N─C</subject><subject>Iron</subject><subject>Nanoparticles</subject><subject>Protonation</subject><subject>Protons</subject><subject>Reduction</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM9Kw0AQxhdRsFavnhc8p-7s5s_uscTWCtWKVPC2bJJJm7JN6iZRcvMhfEKfxJRqD8PMB983w_wIuQY2Asb4rcny7YgzLgAkyBMygBBCTzAuT48zvJ2Ti7reMAZRJPwBacdpihadaYpyRZ9d1VQlNWVGJxbTxvVi6UxZ5-jopDSJxZrOitXadnScNsUH0in-fH899RXT2DTGdnVD88r959M1bovUWBovOH3BrO1TVXlJznJja7z660PyOp0s45k3X9w_xOO5t-NCSC8MQxYkSaZ8kyvliyTKgYGPQeIHoeo_VVIxQF_6MpCBMAhBxiQLjUCJqRFiSG4Oe3euem-xbvSmal3Zn9RciUgwGXDoXerg-iwsdnrniq1xnQam91z1nqs-ctXju-njUYlfG5JvaA</recordid><startdate>20240304</startdate><enddate>20240304</enddate><creator>Wang, Xiaoyu</creator><creator>Wang, Cai</creator><creator>Ren, Houan</creator><creator>Lu, Jiaxin</creator><creator>Chen, Bairong</creator><creator>Liu, Yuping</creator><creator>Guan, Qingxin</creator><creator>Li, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7287-8523</orcidid><orcidid>https://orcid.org/0000-0003-0184-2173</orcidid></search><sort><creationdate>20240304</creationdate><title>Accelerating Proton and Electron Transfer Enables Highly Active Fe─N─C Catalyst for Electrochemical CO2 Reduction</title><author>Wang, Xiaoyu ; Wang, Cai ; Ren, Houan ; Lu, Jiaxin ; Chen, Bairong ; Liu, Yuping ; Guan, Qingxin ; Li, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2338-66605bbd94af9943b7f1014e5b456902398901e48485853ae15d0806a3e8eca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Carbon nanotubes</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>CO2 reduction</topic><topic>Current density</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Electron transport</topic><topic>Electrons</topic><topic>Fe nanoparticles</topic><topic>Fe─N─C</topic><topic>Iron</topic><topic>Nanoparticles</topic><topic>Protonation</topic><topic>Protons</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Wang, Cai</creatorcontrib><creatorcontrib>Ren, Houan</creatorcontrib><creatorcontrib>Lu, Jiaxin</creatorcontrib><creatorcontrib>Chen, Bairong</creatorcontrib><creatorcontrib>Liu, Yuping</creatorcontrib><creatorcontrib>Guan, Qingxin</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoyu</au><au>Wang, Cai</au><au>Ren, Houan</au><au>Lu, Jiaxin</au><au>Chen, Bairong</au><au>Liu, Yuping</au><au>Guan, Qingxin</au><au>Li, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating Proton and Electron Transfer Enables Highly Active Fe─N─C Catalyst for Electrochemical CO2 Reduction</atitle><jtitle>Advanced functional materials</jtitle><date>2024-03-04</date><risdate>2024</risdate><volume>34</volume><issue>10</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Atomically dispersed Fe─N─C catalysts display great potential for efficient CO production in the field of electrochemical CO2 reduction (ECR), but still suffer from unsatisfactory activity limited by the slow proton and electron transfer during the ECR process. Here, a superior Fe─N─C electrocatalyst is designed by anchoring the individual FeN4 sites and Fe nanoparticles onto highly conductive carbon nanotubes. The resultant catalyst displays a commendable CO partial current density of 16.01 mA cm−2 with a turnover frequency of 3519.6 h−1 at −0.65 V in an H‐type cell, and also exhibits CO selectivity > 90% under high current density over 120 mA cm−2 in a flow cell. This remarkable activity exceeds a host of previously reported Fe─N─C catalysts. The findings indicate that the carbon nanotube facilitates CO production due to its strong capability of electron transport and charge transfer. In situ spectroscopic analysis, controlled experiments, and theoretical calculations reveal that Fe nanoparticles effectively promote water dissociation and the subsequent protonation step, accelerate the formation of *COOH intermediate, and thus greatly enhance the ECR activity.
Single‐atom Fe sites and Fe nanoparticles are constructed on highly conductive carbon nanotubes via a hydrogen‐assisted strategy for targeted enhancement of proton and electron transfer. The resultant catalyst exhibits remarkable activity in electrochemical CO2 reduction, surpassing most previously reported Fe─N─C catalysts.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202311818</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7287-8523</orcidid><orcidid>https://orcid.org/0000-0003-0184-2173</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-03, Vol.34 (10), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2937308521 |
source | Wiley Online Library |
subjects | Carbon dioxide Carbon nanotubes Catalysts Charge transfer CO2 reduction Current density Electrocatalysts Electron transfer Electron transport Electrons Fe nanoparticles Fe─N─C Iron Nanoparticles Protonation Protons Reduction |
title | Accelerating Proton and Electron Transfer Enables Highly Active Fe─N─C Catalyst for Electrochemical CO2 Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T01%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20Proton%20and%20Electron%20Transfer%20Enables%20Highly%20Active%20Fe%E2%94%80N%E2%94%80C%20Catalyst%20for%20Electrochemical%20CO2%20Reduction&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Xiaoyu&rft.date=2024-03-04&rft.volume=34&rft.issue=10&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202311818&rft_dat=%3Cproquest_wiley%3E2937308521%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937308521&rft_id=info:pmid/&rfr_iscdi=true |