Fluorine recovery through alkaline defluorination of polyvinylidene fluoride

The establishment of technological approaches for the defluorination of waste fluoropolymers and recovery of eliminated F – may contribute to the development of fluorine recycling routes. In this study, we investigated the effects of alkalinity, phase transfer catalyst (PTC) concentration, reaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of material cycles and waste management 2024-03, Vol.26 (2), p.669-678
Hauptverfasser: Morita, Yoshinori, Saito, Yuko, Kumagai, Shogo, Kameda, Tomohito, Shiratori, Toshikazu, Yoshioka, Toshiaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 678
container_issue 2
container_start_page 669
container_title Journal of material cycles and waste management
container_volume 26
creator Morita, Yoshinori
Saito, Yuko
Kumagai, Shogo
Kameda, Tomohito
Shiratori, Toshikazu
Yoshioka, Toshiaki
description The establishment of technological approaches for the defluorination of waste fluoropolymers and recovery of eliminated F – may contribute to the development of fluorine recycling routes. In this study, we investigated the effects of alkalinity, phase transfer catalyst (PTC) concentration, reaction temperature, and solvent types on the defluorination of polyvinylidene fluoride (PVDF) by alkaline wet processing. The rate of defluorination of PVDF in 4.0 M sodium hydroxide (NaOH) and 50 mM tetrabutylammonium bromide (TBAB) under aqueous conditions reached 89.2%. In addition, the defluorination reaction proceeded faster in solvents such as diethylene glycol (DEG) and triethylene glycol (TEG) than in water because of the high affinity between PVDF and these diols. To investigate the feasibility of developing a fluorine recycling route, the defluorination of a photovoltaic (PV) backsheet and subsequent CaF 2 precipitation from the eliminated F – was examined. A total of 88.3% of F contained in the PV backsheet was recovered as CaF 2 , which satisfied the quality standards of commercial fluorspar. This study demonstrated that alkaline wet processing is effective for the defluorination of PVDF and that the establishment of a F recycling route along the F supply chain may be feasible.
doi_str_mv 10.1007/s10163-023-01749-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2937193862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937193862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8cf9dffbe1cbc11d924e4ed08912d8e9c76c8912687eefcbc3b01d3ccf76dd1a3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Fz9FMUpvmKIurwoIXPYc2mex2rc2atMv235u1gjcPwwy8772BR8g1sFtgTN5FYFAIyngakLmihxMygwKAlpzL03TnoqS5upfn5CLGLWNcMSFnZLVsBx-aDrOAxu8xjFm_CX5Yb7Kq_ajao2LRTVDVN77LvMt2vh33TTe2jcUETLLFS3Lmqjbi1e-ek_fl49vima5en14WDytqRCF6WhqnrHM1gqkNgFU8xxwtKxVwW6IysjDHuyglokuMqBlYYYyThbVQiTm5mXJ3wX8NGHu99UPo0kvNlZCgRFnwRPGJMsHHGNDpXWg-qzBqYPrYmp5a06k1_dOaPiSTmEwxwd0aw1_0P65vCvlzKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937193862</pqid></control><display><type>article</type><title>Fluorine recovery through alkaline defluorination of polyvinylidene fluoride</title><source>SpringerLink Journals - AutoHoldings</source><creator>Morita, Yoshinori ; Saito, Yuko ; Kumagai, Shogo ; Kameda, Tomohito ; Shiratori, Toshikazu ; Yoshioka, Toshiaki</creator><creatorcontrib>Morita, Yoshinori ; Saito, Yuko ; Kumagai, Shogo ; Kameda, Tomohito ; Shiratori, Toshikazu ; Yoshioka, Toshiaki</creatorcontrib><description>The establishment of technological approaches for the defluorination of waste fluoropolymers and recovery of eliminated F – may contribute to the development of fluorine recycling routes. In this study, we investigated the effects of alkalinity, phase transfer catalyst (PTC) concentration, reaction temperature, and solvent types on the defluorination of polyvinylidene fluoride (PVDF) by alkaline wet processing. The rate of defluorination of PVDF in 4.0 M sodium hydroxide (NaOH) and 50 mM tetrabutylammonium bromide (TBAB) under aqueous conditions reached 89.2%. In addition, the defluorination reaction proceeded faster in solvents such as diethylene glycol (DEG) and triethylene glycol (TEG) than in water because of the high affinity between PVDF and these diols. To investigate the feasibility of developing a fluorine recycling route, the defluorination of a photovoltaic (PV) backsheet and subsequent CaF 2 precipitation from the eliminated F – was examined. A total of 88.3% of F contained in the PV backsheet was recovered as CaF 2 , which satisfied the quality standards of commercial fluorspar. This study demonstrated that alkaline wet processing is effective for the defluorination of PVDF and that the establishment of a F recycling route along the F supply chain may be feasible.</description><identifier>ISSN: 1438-4957</identifier><identifier>EISSN: 1611-8227</identifier><identifier>DOI: 10.1007/s10163-023-01749-x</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Alkalinity ; Calcium fluoride ; Catalysts ; Civil Engineering ; Defluorination ; Diethylene glycol ; Diols ; Engineering ; Environmental Management ; Feasibility ; Fluorides ; Fluorine ; Fluorite ; Fluoropolymers ; Phase transfer catalysts ; Photovoltaic cells ; Photovoltaics ; Polyvinylidene fluorides ; Quality standards ; Recycling ; Sodium hydroxide ; Solvents ; Special Feature: Original Article ; Supply chains ; Tetrabutylammonium bromide ; Triethylene glycol ; Waste Management/Waste Technology ; Wet processing</subject><ispartof>Journal of material cycles and waste management, 2024-03, Vol.26 (2), p.669-678</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8cf9dffbe1cbc11d924e4ed08912d8e9c76c8912687eefcbc3b01d3ccf76dd1a3</citedby><cites>FETCH-LOGICAL-c363t-8cf9dffbe1cbc11d924e4ed08912d8e9c76c8912687eefcbc3b01d3ccf76dd1a3</cites><orcidid>0000-0003-4112-2584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10163-023-01749-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10163-023-01749-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Morita, Yoshinori</creatorcontrib><creatorcontrib>Saito, Yuko</creatorcontrib><creatorcontrib>Kumagai, Shogo</creatorcontrib><creatorcontrib>Kameda, Tomohito</creatorcontrib><creatorcontrib>Shiratori, Toshikazu</creatorcontrib><creatorcontrib>Yoshioka, Toshiaki</creatorcontrib><title>Fluorine recovery through alkaline defluorination of polyvinylidene fluoride</title><title>Journal of material cycles and waste management</title><addtitle>J Mater Cycles Waste Manag</addtitle><description>The establishment of technological approaches for the defluorination of waste fluoropolymers and recovery of eliminated F – may contribute to the development of fluorine recycling routes. In this study, we investigated the effects of alkalinity, phase transfer catalyst (PTC) concentration, reaction temperature, and solvent types on the defluorination of polyvinylidene fluoride (PVDF) by alkaline wet processing. The rate of defluorination of PVDF in 4.0 M sodium hydroxide (NaOH) and 50 mM tetrabutylammonium bromide (TBAB) under aqueous conditions reached 89.2%. In addition, the defluorination reaction proceeded faster in solvents such as diethylene glycol (DEG) and triethylene glycol (TEG) than in water because of the high affinity between PVDF and these diols. To investigate the feasibility of developing a fluorine recycling route, the defluorination of a photovoltaic (PV) backsheet and subsequent CaF 2 precipitation from the eliminated F – was examined. A total of 88.3% of F contained in the PV backsheet was recovered as CaF 2 , which satisfied the quality standards of commercial fluorspar. This study demonstrated that alkaline wet processing is effective for the defluorination of PVDF and that the establishment of a F recycling route along the F supply chain may be feasible.</description><subject>Alkalinity</subject><subject>Calcium fluoride</subject><subject>Catalysts</subject><subject>Civil Engineering</subject><subject>Defluorination</subject><subject>Diethylene glycol</subject><subject>Diols</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Feasibility</subject><subject>Fluorides</subject><subject>Fluorine</subject><subject>Fluorite</subject><subject>Fluoropolymers</subject><subject>Phase transfer catalysts</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Polyvinylidene fluorides</subject><subject>Quality standards</subject><subject>Recycling</subject><subject>Sodium hydroxide</subject><subject>Solvents</subject><subject>Special Feature: Original Article</subject><subject>Supply chains</subject><subject>Tetrabutylammonium bromide</subject><subject>Triethylene glycol</subject><subject>Waste Management/Waste Technology</subject><subject>Wet processing</subject><issn>1438-4957</issn><issn>1611-8227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFLxDAQhYMouK7-AU8Fz9FMUpvmKIurwoIXPYc2mex2rc2atMv235u1gjcPwwy8772BR8g1sFtgTN5FYFAIyngakLmihxMygwKAlpzL03TnoqS5upfn5CLGLWNcMSFnZLVsBx-aDrOAxu8xjFm_CX5Yb7Kq_ajao2LRTVDVN77LvMt2vh33TTe2jcUETLLFS3Lmqjbi1e-ek_fl49vima5en14WDytqRCF6WhqnrHM1gqkNgFU8xxwtKxVwW6IysjDHuyglokuMqBlYYYyThbVQiTm5mXJ3wX8NGHu99UPo0kvNlZCgRFnwRPGJMsHHGNDpXWg-qzBqYPrYmp5a06k1_dOaPiSTmEwxwd0aw1_0P65vCvlzKg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Morita, Yoshinori</creator><creator>Saito, Yuko</creator><creator>Kumagai, Shogo</creator><creator>Kameda, Tomohito</creator><creator>Shiratori, Toshikazu</creator><creator>Yoshioka, Toshiaki</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4112-2584</orcidid></search><sort><creationdate>20240301</creationdate><title>Fluorine recovery through alkaline defluorination of polyvinylidene fluoride</title><author>Morita, Yoshinori ; Saito, Yuko ; Kumagai, Shogo ; Kameda, Tomohito ; Shiratori, Toshikazu ; Yoshioka, Toshiaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8cf9dffbe1cbc11d924e4ed08912d8e9c76c8912687eefcbc3b01d3ccf76dd1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkalinity</topic><topic>Calcium fluoride</topic><topic>Catalysts</topic><topic>Civil Engineering</topic><topic>Defluorination</topic><topic>Diethylene glycol</topic><topic>Diols</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Feasibility</topic><topic>Fluorides</topic><topic>Fluorine</topic><topic>Fluorite</topic><topic>Fluoropolymers</topic><topic>Phase transfer catalysts</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Polyvinylidene fluorides</topic><topic>Quality standards</topic><topic>Recycling</topic><topic>Sodium hydroxide</topic><topic>Solvents</topic><topic>Special Feature: Original Article</topic><topic>Supply chains</topic><topic>Tetrabutylammonium bromide</topic><topic>Triethylene glycol</topic><topic>Waste Management/Waste Technology</topic><topic>Wet processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morita, Yoshinori</creatorcontrib><creatorcontrib>Saito, Yuko</creatorcontrib><creatorcontrib>Kumagai, Shogo</creatorcontrib><creatorcontrib>Kameda, Tomohito</creatorcontrib><creatorcontrib>Shiratori, Toshikazu</creatorcontrib><creatorcontrib>Yoshioka, Toshiaki</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of material cycles and waste management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morita, Yoshinori</au><au>Saito, Yuko</au><au>Kumagai, Shogo</au><au>Kameda, Tomohito</au><au>Shiratori, Toshikazu</au><au>Yoshioka, Toshiaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorine recovery through alkaline defluorination of polyvinylidene fluoride</atitle><jtitle>Journal of material cycles and waste management</jtitle><stitle>J Mater Cycles Waste Manag</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>26</volume><issue>2</issue><spage>669</spage><epage>678</epage><pages>669-678</pages><issn>1438-4957</issn><eissn>1611-8227</eissn><abstract>The establishment of technological approaches for the defluorination of waste fluoropolymers and recovery of eliminated F – may contribute to the development of fluorine recycling routes. In this study, we investigated the effects of alkalinity, phase transfer catalyst (PTC) concentration, reaction temperature, and solvent types on the defluorination of polyvinylidene fluoride (PVDF) by alkaline wet processing. The rate of defluorination of PVDF in 4.0 M sodium hydroxide (NaOH) and 50 mM tetrabutylammonium bromide (TBAB) under aqueous conditions reached 89.2%. In addition, the defluorination reaction proceeded faster in solvents such as diethylene glycol (DEG) and triethylene glycol (TEG) than in water because of the high affinity between PVDF and these diols. To investigate the feasibility of developing a fluorine recycling route, the defluorination of a photovoltaic (PV) backsheet and subsequent CaF 2 precipitation from the eliminated F – was examined. A total of 88.3% of F contained in the PV backsheet was recovered as CaF 2 , which satisfied the quality standards of commercial fluorspar. This study demonstrated that alkaline wet processing is effective for the defluorination of PVDF and that the establishment of a F recycling route along the F supply chain may be feasible.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10163-023-01749-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4112-2584</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1438-4957
ispartof Journal of material cycles and waste management, 2024-03, Vol.26 (2), p.669-678
issn 1438-4957
1611-8227
language eng
recordid cdi_proquest_journals_2937193862
source SpringerLink Journals - AutoHoldings
subjects Alkalinity
Calcium fluoride
Catalysts
Civil Engineering
Defluorination
Diethylene glycol
Diols
Engineering
Environmental Management
Feasibility
Fluorides
Fluorine
Fluorite
Fluoropolymers
Phase transfer catalysts
Photovoltaic cells
Photovoltaics
Polyvinylidene fluorides
Quality standards
Recycling
Sodium hydroxide
Solvents
Special Feature: Original Article
Supply chains
Tetrabutylammonium bromide
Triethylene glycol
Waste Management/Waste Technology
Wet processing
title Fluorine recovery through alkaline defluorination of polyvinylidene fluoride
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorine%20recovery%20through%20alkaline%20defluorination%20of%20polyvinylidene%20fluoride&rft.jtitle=Journal%20of%20material%20cycles%20and%20waste%20management&rft.au=Morita,%20Yoshinori&rft.date=2024-03-01&rft.volume=26&rft.issue=2&rft.spage=669&rft.epage=678&rft.pages=669-678&rft.issn=1438-4957&rft.eissn=1611-8227&rft_id=info:doi/10.1007/s10163-023-01749-x&rft_dat=%3Cproquest_cross%3E2937193862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937193862&rft_id=info:pmid/&rfr_iscdi=true