Fluorine recovery through alkaline defluorination of polyvinylidene fluoride
The establishment of technological approaches for the defluorination of waste fluoropolymers and recovery of eliminated F – may contribute to the development of fluorine recycling routes. In this study, we investigated the effects of alkalinity, phase transfer catalyst (PTC) concentration, reaction...
Gespeichert in:
Veröffentlicht in: | Journal of material cycles and waste management 2024-03, Vol.26 (2), p.669-678 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 678 |
---|---|
container_issue | 2 |
container_start_page | 669 |
container_title | Journal of material cycles and waste management |
container_volume | 26 |
creator | Morita, Yoshinori Saito, Yuko Kumagai, Shogo Kameda, Tomohito Shiratori, Toshikazu Yoshioka, Toshiaki |
description | The establishment of technological approaches for the defluorination of waste fluoropolymers and recovery of eliminated F
–
may contribute to the development of fluorine recycling routes. In this study, we investigated the effects of alkalinity, phase transfer catalyst (PTC) concentration, reaction temperature, and solvent types on the defluorination of polyvinylidene fluoride (PVDF) by alkaline wet processing. The rate of defluorination of PVDF in 4.0 M sodium hydroxide (NaOH) and 50 mM tetrabutylammonium bromide (TBAB) under aqueous conditions reached 89.2%. In addition, the defluorination reaction proceeded faster in solvents such as diethylene glycol (DEG) and triethylene glycol (TEG) than in water because of the high affinity between PVDF and these diols. To investigate the feasibility of developing a fluorine recycling route, the defluorination of a photovoltaic (PV) backsheet and subsequent CaF
2
precipitation from the eliminated F
–
was examined. A total of 88.3% of F contained in the PV backsheet was recovered as CaF
2
, which satisfied the quality standards of commercial fluorspar. This study demonstrated that alkaline wet processing is effective for the defluorination of PVDF and that the establishment of a F recycling route along the F supply chain may be feasible. |
doi_str_mv | 10.1007/s10163-023-01749-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2937193862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937193862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8cf9dffbe1cbc11d924e4ed08912d8e9c76c8912687eefcbc3b01d3ccf76dd1a3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Fz9FMUpvmKIurwoIXPYc2mex2rc2atMv235u1gjcPwwy8772BR8g1sFtgTN5FYFAIyngakLmihxMygwKAlpzL03TnoqS5upfn5CLGLWNcMSFnZLVsBx-aDrOAxu8xjFm_CX5Yb7Kq_ajao2LRTVDVN77LvMt2vh33TTe2jcUETLLFS3Lmqjbi1e-ek_fl49vima5en14WDytqRCF6WhqnrHM1gqkNgFU8xxwtKxVwW6IysjDHuyglokuMqBlYYYyThbVQiTm5mXJ3wX8NGHu99UPo0kvNlZCgRFnwRPGJMsHHGNDpXWg-qzBqYPrYmp5a06k1_dOaPiSTmEwxwd0aw1_0P65vCvlzKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937193862</pqid></control><display><type>article</type><title>Fluorine recovery through alkaline defluorination of polyvinylidene fluoride</title><source>SpringerLink Journals - AutoHoldings</source><creator>Morita, Yoshinori ; Saito, Yuko ; Kumagai, Shogo ; Kameda, Tomohito ; Shiratori, Toshikazu ; Yoshioka, Toshiaki</creator><creatorcontrib>Morita, Yoshinori ; Saito, Yuko ; Kumagai, Shogo ; Kameda, Tomohito ; Shiratori, Toshikazu ; Yoshioka, Toshiaki</creatorcontrib><description>The establishment of technological approaches for the defluorination of waste fluoropolymers and recovery of eliminated F
–
may contribute to the development of fluorine recycling routes. In this study, we investigated the effects of alkalinity, phase transfer catalyst (PTC) concentration, reaction temperature, and solvent types on the defluorination of polyvinylidene fluoride (PVDF) by alkaline wet processing. The rate of defluorination of PVDF in 4.0 M sodium hydroxide (NaOH) and 50 mM tetrabutylammonium bromide (TBAB) under aqueous conditions reached 89.2%. In addition, the defluorination reaction proceeded faster in solvents such as diethylene glycol (DEG) and triethylene glycol (TEG) than in water because of the high affinity between PVDF and these diols. To investigate the feasibility of developing a fluorine recycling route, the defluorination of a photovoltaic (PV) backsheet and subsequent CaF
2
precipitation from the eliminated F
–
was examined. A total of 88.3% of F contained in the PV backsheet was recovered as CaF
2
, which satisfied the quality standards of commercial fluorspar. This study demonstrated that alkaline wet processing is effective for the defluorination of PVDF and that the establishment of a F recycling route along the F supply chain may be feasible.</description><identifier>ISSN: 1438-4957</identifier><identifier>EISSN: 1611-8227</identifier><identifier>DOI: 10.1007/s10163-023-01749-x</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Alkalinity ; Calcium fluoride ; Catalysts ; Civil Engineering ; Defluorination ; Diethylene glycol ; Diols ; Engineering ; Environmental Management ; Feasibility ; Fluorides ; Fluorine ; Fluorite ; Fluoropolymers ; Phase transfer catalysts ; Photovoltaic cells ; Photovoltaics ; Polyvinylidene fluorides ; Quality standards ; Recycling ; Sodium hydroxide ; Solvents ; Special Feature: Original Article ; Supply chains ; Tetrabutylammonium bromide ; Triethylene glycol ; Waste Management/Waste Technology ; Wet processing</subject><ispartof>Journal of material cycles and waste management, 2024-03, Vol.26 (2), p.669-678</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8cf9dffbe1cbc11d924e4ed08912d8e9c76c8912687eefcbc3b01d3ccf76dd1a3</citedby><cites>FETCH-LOGICAL-c363t-8cf9dffbe1cbc11d924e4ed08912d8e9c76c8912687eefcbc3b01d3ccf76dd1a3</cites><orcidid>0000-0003-4112-2584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10163-023-01749-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10163-023-01749-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Morita, Yoshinori</creatorcontrib><creatorcontrib>Saito, Yuko</creatorcontrib><creatorcontrib>Kumagai, Shogo</creatorcontrib><creatorcontrib>Kameda, Tomohito</creatorcontrib><creatorcontrib>Shiratori, Toshikazu</creatorcontrib><creatorcontrib>Yoshioka, Toshiaki</creatorcontrib><title>Fluorine recovery through alkaline defluorination of polyvinylidene fluoride</title><title>Journal of material cycles and waste management</title><addtitle>J Mater Cycles Waste Manag</addtitle><description>The establishment of technological approaches for the defluorination of waste fluoropolymers and recovery of eliminated F
–
may contribute to the development of fluorine recycling routes. In this study, we investigated the effects of alkalinity, phase transfer catalyst (PTC) concentration, reaction temperature, and solvent types on the defluorination of polyvinylidene fluoride (PVDF) by alkaline wet processing. The rate of defluorination of PVDF in 4.0 M sodium hydroxide (NaOH) and 50 mM tetrabutylammonium bromide (TBAB) under aqueous conditions reached 89.2%. In addition, the defluorination reaction proceeded faster in solvents such as diethylene glycol (DEG) and triethylene glycol (TEG) than in water because of the high affinity between PVDF and these diols. To investigate the feasibility of developing a fluorine recycling route, the defluorination of a photovoltaic (PV) backsheet and subsequent CaF
2
precipitation from the eliminated F
–
was examined. A total of 88.3% of F contained in the PV backsheet was recovered as CaF
2
, which satisfied the quality standards of commercial fluorspar. This study demonstrated that alkaline wet processing is effective for the defluorination of PVDF and that the establishment of a F recycling route along the F supply chain may be feasible.</description><subject>Alkalinity</subject><subject>Calcium fluoride</subject><subject>Catalysts</subject><subject>Civil Engineering</subject><subject>Defluorination</subject><subject>Diethylene glycol</subject><subject>Diols</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Feasibility</subject><subject>Fluorides</subject><subject>Fluorine</subject><subject>Fluorite</subject><subject>Fluoropolymers</subject><subject>Phase transfer catalysts</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Polyvinylidene fluorides</subject><subject>Quality standards</subject><subject>Recycling</subject><subject>Sodium hydroxide</subject><subject>Solvents</subject><subject>Special Feature: Original Article</subject><subject>Supply chains</subject><subject>Tetrabutylammonium bromide</subject><subject>Triethylene glycol</subject><subject>Waste Management/Waste Technology</subject><subject>Wet processing</subject><issn>1438-4957</issn><issn>1611-8227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFLxDAQhYMouK7-AU8Fz9FMUpvmKIurwoIXPYc2mex2rc2atMv235u1gjcPwwy8772BR8g1sFtgTN5FYFAIyngakLmihxMygwKAlpzL03TnoqS5upfn5CLGLWNcMSFnZLVsBx-aDrOAxu8xjFm_CX5Yb7Kq_ajao2LRTVDVN77LvMt2vh33TTe2jcUETLLFS3Lmqjbi1e-ek_fl49vima5en14WDytqRCF6WhqnrHM1gqkNgFU8xxwtKxVwW6IysjDHuyglokuMqBlYYYyThbVQiTm5mXJ3wX8NGHu99UPo0kvNlZCgRFnwRPGJMsHHGNDpXWg-qzBqYPrYmp5a06k1_dOaPiSTmEwxwd0aw1_0P65vCvlzKg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Morita, Yoshinori</creator><creator>Saito, Yuko</creator><creator>Kumagai, Shogo</creator><creator>Kameda, Tomohito</creator><creator>Shiratori, Toshikazu</creator><creator>Yoshioka, Toshiaki</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4112-2584</orcidid></search><sort><creationdate>20240301</creationdate><title>Fluorine recovery through alkaline defluorination of polyvinylidene fluoride</title><author>Morita, Yoshinori ; Saito, Yuko ; Kumagai, Shogo ; Kameda, Tomohito ; Shiratori, Toshikazu ; Yoshioka, Toshiaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8cf9dffbe1cbc11d924e4ed08912d8e9c76c8912687eefcbc3b01d3ccf76dd1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkalinity</topic><topic>Calcium fluoride</topic><topic>Catalysts</topic><topic>Civil Engineering</topic><topic>Defluorination</topic><topic>Diethylene glycol</topic><topic>Diols</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Feasibility</topic><topic>Fluorides</topic><topic>Fluorine</topic><topic>Fluorite</topic><topic>Fluoropolymers</topic><topic>Phase transfer catalysts</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Polyvinylidene fluorides</topic><topic>Quality standards</topic><topic>Recycling</topic><topic>Sodium hydroxide</topic><topic>Solvents</topic><topic>Special Feature: Original Article</topic><topic>Supply chains</topic><topic>Tetrabutylammonium bromide</topic><topic>Triethylene glycol</topic><topic>Waste Management/Waste Technology</topic><topic>Wet processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morita, Yoshinori</creatorcontrib><creatorcontrib>Saito, Yuko</creatorcontrib><creatorcontrib>Kumagai, Shogo</creatorcontrib><creatorcontrib>Kameda, Tomohito</creatorcontrib><creatorcontrib>Shiratori, Toshikazu</creatorcontrib><creatorcontrib>Yoshioka, Toshiaki</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of material cycles and waste management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morita, Yoshinori</au><au>Saito, Yuko</au><au>Kumagai, Shogo</au><au>Kameda, Tomohito</au><au>Shiratori, Toshikazu</au><au>Yoshioka, Toshiaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorine recovery through alkaline defluorination of polyvinylidene fluoride</atitle><jtitle>Journal of material cycles and waste management</jtitle><stitle>J Mater Cycles Waste Manag</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>26</volume><issue>2</issue><spage>669</spage><epage>678</epage><pages>669-678</pages><issn>1438-4957</issn><eissn>1611-8227</eissn><abstract>The establishment of technological approaches for the defluorination of waste fluoropolymers and recovery of eliminated F
–
may contribute to the development of fluorine recycling routes. In this study, we investigated the effects of alkalinity, phase transfer catalyst (PTC) concentration, reaction temperature, and solvent types on the defluorination of polyvinylidene fluoride (PVDF) by alkaline wet processing. The rate of defluorination of PVDF in 4.0 M sodium hydroxide (NaOH) and 50 mM tetrabutylammonium bromide (TBAB) under aqueous conditions reached 89.2%. In addition, the defluorination reaction proceeded faster in solvents such as diethylene glycol (DEG) and triethylene glycol (TEG) than in water because of the high affinity between PVDF and these diols. To investigate the feasibility of developing a fluorine recycling route, the defluorination of a photovoltaic (PV) backsheet and subsequent CaF
2
precipitation from the eliminated F
–
was examined. A total of 88.3% of F contained in the PV backsheet was recovered as CaF
2
, which satisfied the quality standards of commercial fluorspar. This study demonstrated that alkaline wet processing is effective for the defluorination of PVDF and that the establishment of a F recycling route along the F supply chain may be feasible.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10163-023-01749-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4112-2584</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-4957 |
ispartof | Journal of material cycles and waste management, 2024-03, Vol.26 (2), p.669-678 |
issn | 1438-4957 1611-8227 |
language | eng |
recordid | cdi_proquest_journals_2937193862 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alkalinity Calcium fluoride Catalysts Civil Engineering Defluorination Diethylene glycol Diols Engineering Environmental Management Feasibility Fluorides Fluorine Fluorite Fluoropolymers Phase transfer catalysts Photovoltaic cells Photovoltaics Polyvinylidene fluorides Quality standards Recycling Sodium hydroxide Solvents Special Feature: Original Article Supply chains Tetrabutylammonium bromide Triethylene glycol Waste Management/Waste Technology Wet processing |
title | Fluorine recovery through alkaline defluorination of polyvinylidene fluoride |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorine%20recovery%20through%20alkaline%20defluorination%20of%20polyvinylidene%20fluoride&rft.jtitle=Journal%20of%20material%20cycles%20and%20waste%20management&rft.au=Morita,%20Yoshinori&rft.date=2024-03-01&rft.volume=26&rft.issue=2&rft.spage=669&rft.epage=678&rft.pages=669-678&rft.issn=1438-4957&rft.eissn=1611-8227&rft_id=info:doi/10.1007/s10163-023-01749-x&rft_dat=%3Cproquest_cross%3E2937193862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937193862&rft_id=info:pmid/&rfr_iscdi=true |