CNN-based Indian medicinal leaf type identification and medical use recommendation

Medicinal leaves are playing a vital role in our everyday life. There are an enormous amount of species present in the world. Identification of each type would be a tedious task. Using image processing technology, we can overcome this problem by providing computer vision with the help of a convoluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2024-04, Vol.36 (10), p.5399-5412
Hauptverfasser: Praveena, S., Pavithra, S. M., Kumar, A. Dalvin Vinoth, Veeresha, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5412
container_issue 10
container_start_page 5399
container_title Neural computing & applications
container_volume 36
creator Praveena, S.
Pavithra, S. M.
Kumar, A. Dalvin Vinoth
Veeresha, P.
description Medicinal leaves are playing a vital role in our everyday life. There are an enormous amount of species present in the world. Identification of each type would be a tedious task. Using image processing technology, we can overcome this problem by providing computer vision with the help of a convolution neural network (CNN). The objective of this research is to find out the best CNN model that helps in classifying the plant leaf species and identifying its category. In this research work, the proposed basic CNN model consisting of four convolution layers uses ten different medicinal leaf species each belonging to two categories providing an accuracy of 96.88 % .
doi_str_mv 10.1007/s00521-023-09352-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2937180908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937180908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-301ab1e992622d8a34390be2be1f0edab5f242a5441f6ad248ae9c6a173e791b3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA69GbxzyylKK2UCqIrsOdyR1J6WRqMl303xs7gjtXd3G-c7h8jN1yuOcA1UMEKATPQcgctCxErs_YjCspcwlFfc5moFWKSyUv2VWMWwBQZV3M2Ntis8kbjGSzlbcOfdaTda3zuMt2hF02HveUOUt-dJ1rcXSDz9DbCUvQIVIWqB36nrw9xdfsosNdpJvfO2cfz0_vi2W-fn1ZLR7XeSu5HtNjHBtOWotSCFujVFJDQ6Ih3gFZbIpOKIGFUrwr0QpVI-m2RF5JqjRv5JzdTbv7MHwdKI5mOxxCejwaoWXFa9BQJ0pMVBuGGAN1Zh9cj-FoOJgfd2ZyZ5I7c3JndCrJqRQT7D8p_E3_0_oGn0xxZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937180908</pqid></control><display><type>article</type><title>CNN-based Indian medicinal leaf type identification and medical use recommendation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Praveena, S. ; Pavithra, S. M. ; Kumar, A. Dalvin Vinoth ; Veeresha, P.</creator><creatorcontrib>Praveena, S. ; Pavithra, S. M. ; Kumar, A. Dalvin Vinoth ; Veeresha, P.</creatorcontrib><description>Medicinal leaves are playing a vital role in our everyday life. There are an enormous amount of species present in the world. Identification of each type would be a tedious task. Using image processing technology, we can overcome this problem by providing computer vision with the help of a convolution neural network (CNN). The objective of this research is to find out the best CNN model that helps in classifying the plant leaf species and identifying its category. In this research work, the proposed basic CNN model consisting of four convolution layers uses ten different medicinal leaf species each belonging to two categories providing an accuracy of 96.88 % .</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-023-09352-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Computer vision ; Data Mining and Knowledge Discovery ; Datasets ; Flowers &amp; plants ; Herbal medicine ; Image processing ; Image Processing and Computer Vision ; Original Article ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing &amp; applications, 2024-04, Vol.36 (10), p.5399-5412</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-301ab1e992622d8a34390be2be1f0edab5f242a5441f6ad248ae9c6a173e791b3</citedby><cites>FETCH-LOGICAL-c319t-301ab1e992622d8a34390be2be1f0edab5f242a5441f6ad248ae9c6a173e791b3</cites><orcidid>0000-0002-4468-3048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-023-09352-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-023-09352-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Praveena, S.</creatorcontrib><creatorcontrib>Pavithra, S. M.</creatorcontrib><creatorcontrib>Kumar, A. Dalvin Vinoth</creatorcontrib><creatorcontrib>Veeresha, P.</creatorcontrib><title>CNN-based Indian medicinal leaf type identification and medical use recommendation</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Medicinal leaves are playing a vital role in our everyday life. There are an enormous amount of species present in the world. Identification of each type would be a tedious task. Using image processing technology, we can overcome this problem by providing computer vision with the help of a convolution neural network (CNN). The objective of this research is to find out the best CNN model that helps in classifying the plant leaf species and identifying its category. In this research work, the proposed basic CNN model consisting of four convolution layers uses ten different medicinal leaf species each belonging to two categories providing an accuracy of 96.88 % .</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Flowers &amp; plants</subject><subject>Herbal medicine</subject><subject>Image processing</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA69GbxzyylKK2UCqIrsOdyR1J6WRqMl303xs7gjtXd3G-c7h8jN1yuOcA1UMEKATPQcgctCxErs_YjCspcwlFfc5moFWKSyUv2VWMWwBQZV3M2Ntis8kbjGSzlbcOfdaTda3zuMt2hF02HveUOUt-dJ1rcXSDz9DbCUvQIVIWqB36nrw9xdfsosNdpJvfO2cfz0_vi2W-fn1ZLR7XeSu5HtNjHBtOWotSCFujVFJDQ6Ih3gFZbIpOKIGFUrwr0QpVI-m2RF5JqjRv5JzdTbv7MHwdKI5mOxxCejwaoWXFa9BQJ0pMVBuGGAN1Zh9cj-FoOJgfd2ZyZ5I7c3JndCrJqRQT7D8p_E3_0_oGn0xxZw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Praveena, S.</creator><creator>Pavithra, S. M.</creator><creator>Kumar, A. Dalvin Vinoth</creator><creator>Veeresha, P.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4468-3048</orcidid></search><sort><creationdate>20240401</creationdate><title>CNN-based Indian medicinal leaf type identification and medical use recommendation</title><author>Praveena, S. ; Pavithra, S. M. ; Kumar, A. Dalvin Vinoth ; Veeresha, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-301ab1e992622d8a34390be2be1f0edab5f242a5441f6ad248ae9c6a173e791b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Flowers &amp; plants</topic><topic>Herbal medicine</topic><topic>Image processing</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Praveena, S.</creatorcontrib><creatorcontrib>Pavithra, S. M.</creatorcontrib><creatorcontrib>Kumar, A. Dalvin Vinoth</creatorcontrib><creatorcontrib>Veeresha, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Praveena, S.</au><au>Pavithra, S. M.</au><au>Kumar, A. Dalvin Vinoth</au><au>Veeresha, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CNN-based Indian medicinal leaf type identification and medical use recommendation</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>36</volume><issue>10</issue><spage>5399</spage><epage>5412</epage><pages>5399-5412</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Medicinal leaves are playing a vital role in our everyday life. There are an enormous amount of species present in the world. Identification of each type would be a tedious task. Using image processing technology, we can overcome this problem by providing computer vision with the help of a convolution neural network (CNN). The objective of this research is to find out the best CNN model that helps in classifying the plant leaf species and identifying its category. In this research work, the proposed basic CNN model consisting of four convolution layers uses ten different medicinal leaf species each belonging to two categories providing an accuracy of 96.88 % .</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-023-09352-9</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4468-3048</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2024-04, Vol.36 (10), p.5399-5412
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2937180908
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Artificial neural networks
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer vision
Data Mining and Knowledge Discovery
Datasets
Flowers & plants
Herbal medicine
Image processing
Image Processing and Computer Vision
Original Article
Probability and Statistics in Computer Science
title CNN-based Indian medicinal leaf type identification and medical use recommendation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CNN-based%20Indian%20medicinal%20leaf%20type%20identification%20and%20medical%20use%20recommendation&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Praveena,%20S.&rft.date=2024-04-01&rft.volume=36&rft.issue=10&rft.spage=5399&rft.epage=5412&rft.pages=5399-5412&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-023-09352-9&rft_dat=%3Cproquest_cross%3E2937180908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937180908&rft_id=info:pmid/&rfr_iscdi=true