CNN-based Indian medicinal leaf type identification and medical use recommendation
Medicinal leaves are playing a vital role in our everyday life. There are an enormous amount of species present in the world. Identification of each type would be a tedious task. Using image processing technology, we can overcome this problem by providing computer vision with the help of a convoluti...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2024-04, Vol.36 (10), p.5399-5412 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5412 |
---|---|
container_issue | 10 |
container_start_page | 5399 |
container_title | Neural computing & applications |
container_volume | 36 |
creator | Praveena, S. Pavithra, S. M. Kumar, A. Dalvin Vinoth Veeresha, P. |
description | Medicinal leaves are playing a vital role in our everyday life. There are an enormous amount of species present in the world. Identification of each type would be a tedious task. Using image processing technology, we can overcome this problem by providing computer vision with the help of a convolution neural network (CNN). The objective of this research is to find out the best CNN model that helps in classifying the plant leaf species and identifying its category. In this research work, the proposed basic CNN model consisting of four convolution layers uses ten different medicinal leaf species each belonging to two categories providing an accuracy of
96.88
%
. |
doi_str_mv | 10.1007/s00521-023-09352-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2937180908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937180908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-301ab1e992622d8a34390be2be1f0edab5f242a5441f6ad248ae9c6a173e791b3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA69GbxzyylKK2UCqIrsOdyR1J6WRqMl303xs7gjtXd3G-c7h8jN1yuOcA1UMEKATPQcgctCxErs_YjCspcwlFfc5moFWKSyUv2VWMWwBQZV3M2Ntis8kbjGSzlbcOfdaTda3zuMt2hF02HveUOUt-dJ1rcXSDz9DbCUvQIVIWqB36nrw9xdfsosNdpJvfO2cfz0_vi2W-fn1ZLR7XeSu5HtNjHBtOWotSCFujVFJDQ6Ih3gFZbIpOKIGFUrwr0QpVI-m2RF5JqjRv5JzdTbv7MHwdKI5mOxxCejwaoWXFa9BQJ0pMVBuGGAN1Zh9cj-FoOJgfd2ZyZ5I7c3JndCrJqRQT7D8p_E3_0_oGn0xxZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937180908</pqid></control><display><type>article</type><title>CNN-based Indian medicinal leaf type identification and medical use recommendation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Praveena, S. ; Pavithra, S. M. ; Kumar, A. Dalvin Vinoth ; Veeresha, P.</creator><creatorcontrib>Praveena, S. ; Pavithra, S. M. ; Kumar, A. Dalvin Vinoth ; Veeresha, P.</creatorcontrib><description>Medicinal leaves are playing a vital role in our everyday life. There are an enormous amount of species present in the world. Identification of each type would be a tedious task. Using image processing technology, we can overcome this problem by providing computer vision with the help of a convolution neural network (CNN). The objective of this research is to find out the best CNN model that helps in classifying the plant leaf species and identifying its category. In this research work, the proposed basic CNN model consisting of four convolution layers uses ten different medicinal leaf species each belonging to two categories providing an accuracy of
96.88
%
.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-023-09352-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Computer vision ; Data Mining and Knowledge Discovery ; Datasets ; Flowers & plants ; Herbal medicine ; Image processing ; Image Processing and Computer Vision ; Original Article ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing & applications, 2024-04, Vol.36 (10), p.5399-5412</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-301ab1e992622d8a34390be2be1f0edab5f242a5441f6ad248ae9c6a173e791b3</citedby><cites>FETCH-LOGICAL-c319t-301ab1e992622d8a34390be2be1f0edab5f242a5441f6ad248ae9c6a173e791b3</cites><orcidid>0000-0002-4468-3048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-023-09352-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-023-09352-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Praveena, S.</creatorcontrib><creatorcontrib>Pavithra, S. M.</creatorcontrib><creatorcontrib>Kumar, A. Dalvin Vinoth</creatorcontrib><creatorcontrib>Veeresha, P.</creatorcontrib><title>CNN-based Indian medicinal leaf type identification and medical use recommendation</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Medicinal leaves are playing a vital role in our everyday life. There are an enormous amount of species present in the world. Identification of each type would be a tedious task. Using image processing technology, we can overcome this problem by providing computer vision with the help of a convolution neural network (CNN). The objective of this research is to find out the best CNN model that helps in classifying the plant leaf species and identifying its category. In this research work, the proposed basic CNN model consisting of four convolution layers uses ten different medicinal leaf species each belonging to two categories providing an accuracy of
96.88
%
.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Flowers & plants</subject><subject>Herbal medicine</subject><subject>Image processing</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA69GbxzyylKK2UCqIrsOdyR1J6WRqMl303xs7gjtXd3G-c7h8jN1yuOcA1UMEKATPQcgctCxErs_YjCspcwlFfc5moFWKSyUv2VWMWwBQZV3M2Ntis8kbjGSzlbcOfdaTda3zuMt2hF02HveUOUt-dJ1rcXSDz9DbCUvQIVIWqB36nrw9xdfsosNdpJvfO2cfz0_vi2W-fn1ZLR7XeSu5HtNjHBtOWotSCFujVFJDQ6Ih3gFZbIpOKIGFUrwr0QpVI-m2RF5JqjRv5JzdTbv7MHwdKI5mOxxCejwaoWXFa9BQJ0pMVBuGGAN1Zh9cj-FoOJgfd2ZyZ5I7c3JndCrJqRQT7D8p_E3_0_oGn0xxZw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Praveena, S.</creator><creator>Pavithra, S. M.</creator><creator>Kumar, A. Dalvin Vinoth</creator><creator>Veeresha, P.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4468-3048</orcidid></search><sort><creationdate>20240401</creationdate><title>CNN-based Indian medicinal leaf type identification and medical use recommendation</title><author>Praveena, S. ; Pavithra, S. M. ; Kumar, A. Dalvin Vinoth ; Veeresha, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-301ab1e992622d8a34390be2be1f0edab5f242a5441f6ad248ae9c6a173e791b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Flowers & plants</topic><topic>Herbal medicine</topic><topic>Image processing</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Praveena, S.</creatorcontrib><creatorcontrib>Pavithra, S. M.</creatorcontrib><creatorcontrib>Kumar, A. Dalvin Vinoth</creatorcontrib><creatorcontrib>Veeresha, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Praveena, S.</au><au>Pavithra, S. M.</au><au>Kumar, A. Dalvin Vinoth</au><au>Veeresha, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CNN-based Indian medicinal leaf type identification and medical use recommendation</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>36</volume><issue>10</issue><spage>5399</spage><epage>5412</epage><pages>5399-5412</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Medicinal leaves are playing a vital role in our everyday life. There are an enormous amount of species present in the world. Identification of each type would be a tedious task. Using image processing technology, we can overcome this problem by providing computer vision with the help of a convolution neural network (CNN). The objective of this research is to find out the best CNN model that helps in classifying the plant leaf species and identifying its category. In this research work, the proposed basic CNN model consisting of four convolution layers uses ten different medicinal leaf species each belonging to two categories providing an accuracy of
96.88
%
.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-023-09352-9</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4468-3048</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2024-04, Vol.36 (10), p.5399-5412 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2937180908 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Artificial neural networks Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Computer vision Data Mining and Knowledge Discovery Datasets Flowers & plants Herbal medicine Image processing Image Processing and Computer Vision Original Article Probability and Statistics in Computer Science |
title | CNN-based Indian medicinal leaf type identification and medical use recommendation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CNN-based%20Indian%20medicinal%20leaf%20type%20identification%20and%20medical%20use%20recommendation&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Praveena,%20S.&rft.date=2024-04-01&rft.volume=36&rft.issue=10&rft.spage=5399&rft.epage=5412&rft.pages=5399-5412&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-023-09352-9&rft_dat=%3Cproquest_cross%3E2937180908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937180908&rft_id=info:pmid/&rfr_iscdi=true |