Modeling transformer architecture with attention layer for human activity recognition

Human activity recognition (HAR) is necessary in numerous fields, involving medicine, sports, and security. Traditional HAR methods often rely on complex feature extraction from raw input data, while convolutional neural networks (CNN) are primarily designed for 2D data. The proposed approach seeks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2024-04, Vol.36 (10), p.5515-5528
Hauptverfasser: Pareek, Gunjan, Nigam, Swati, Singh, Rajiv
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5528
container_issue 10
container_start_page 5515
container_title Neural computing & applications
container_volume 36
creator Pareek, Gunjan
Nigam, Swati
Singh, Rajiv
description Human activity recognition (HAR) is necessary in numerous fields, involving medicine, sports, and security. Traditional HAR methods often rely on complex feature extraction from raw input data, while convolutional neural networks (CNN) are primarily designed for 2D data. The proposed approach seeks to overcome these limitations by leveraging both spatial and temporal attributes for improved action detection and enhancing the understanding of human movements across adjacent frames. This research aims to address the challenges of HAR by introducing a new model that combines a 3D CNN architecture with an attention layer. A 3D convolution transformer is employed to capture intricate spatial and temporal features, generate multiple data channels from input frames, and optimize performance through regularization and model ensemble techniques. The main findings reveal outstanding results on benchmark datasets, with an accuracy of 98.09% and 99.09% on the Weizmann and UCF101 datasets, respectively. These results underscore the model's effectiveness in accurately identifying human activities in movie-based natural environments.
doi_str_mv 10.1007/s00521-023-09362-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2937178578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937178578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-339902fd51b18deba043e6398c76e5b6a5cc05244670e0f3ec375e99aeb590063</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMQfOcWzHI6r4kopY6Gw57qV11SbFdkD997gEiY3phnve93QPIdcMbhmAuosAomQFlLwAzWVZqBMyYRXnBQdRn5IJ6CqvZcXPyUWMGwCoZC0mZPHaL3HruxVNwXax7cMOA7XBrX1Cl4aA9MunNbUpYZd839GtPWQig3Q97GxHrUv-06cDDej6VeeP0CU5a-024tXvnJLF48P77LmYvz29zO7nheNMp4JzraFsl4I1rF5iY6HiKLmunZIoGmmFc_mvqpIKEFqOjiuBWltshAaQfEpuxt596D8GjMls-iF0-aQpNVdM1ULVmSpHyoU-xoCt2Qe_s-FgGJijPjPqM1mf-dFnVA7xMRQz3K0w_FX_k_oG591ztQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937178578</pqid></control><display><type>article</type><title>Modeling transformer architecture with attention layer for human activity recognition</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pareek, Gunjan ; Nigam, Swati ; Singh, Rajiv</creator><creatorcontrib>Pareek, Gunjan ; Nigam, Swati ; Singh, Rajiv</creatorcontrib><description>Human activity recognition (HAR) is necessary in numerous fields, involving medicine, sports, and security. Traditional HAR methods often rely on complex feature extraction from raw input data, while convolutional neural networks (CNN) are primarily designed for 2D data. The proposed approach seeks to overcome these limitations by leveraging both spatial and temporal attributes for improved action detection and enhancing the understanding of human movements across adjacent frames. This research aims to address the challenges of HAR by introducing a new model that combines a 3D CNN architecture with an attention layer. A 3D convolution transformer is employed to capture intricate spatial and temporal features, generate multiple data channels from input frames, and optimize performance through regularization and model ensemble techniques. The main findings reveal outstanding results on benchmark datasets, with an accuracy of 98.09% and 99.09% on the Weizmann and UCF101 datasets, respectively. These results underscore the model's effectiveness in accurately identifying human activities in movie-based natural environments.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-023-09362-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Artificial Intelligence ; Artificial neural networks ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Datasets ; Deep learning ; Feature extraction ; Human activity recognition ; Human motion ; Image Processing and Computer Vision ; Motion perception ; Neural networks ; Original Article ; Probability and Statistics in Computer Science ; Regularization</subject><ispartof>Neural computing &amp; applications, 2024-04, Vol.36 (10), p.5515-5528</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-339902fd51b18deba043e6398c76e5b6a5cc05244670e0f3ec375e99aeb590063</citedby><cites>FETCH-LOGICAL-c319t-339902fd51b18deba043e6398c76e5b6a5cc05244670e0f3ec375e99aeb590063</cites><orcidid>0000-0003-4022-9945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-023-09362-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-023-09362-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pareek, Gunjan</creatorcontrib><creatorcontrib>Nigam, Swati</creatorcontrib><creatorcontrib>Singh, Rajiv</creatorcontrib><title>Modeling transformer architecture with attention layer for human activity recognition</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Human activity recognition (HAR) is necessary in numerous fields, involving medicine, sports, and security. Traditional HAR methods often rely on complex feature extraction from raw input data, while convolutional neural networks (CNN) are primarily designed for 2D data. The proposed approach seeks to overcome these limitations by leveraging both spatial and temporal attributes for improved action detection and enhancing the understanding of human movements across adjacent frames. This research aims to address the challenges of HAR by introducing a new model that combines a 3D CNN architecture with an attention layer. A 3D convolution transformer is employed to capture intricate spatial and temporal features, generate multiple data channels from input frames, and optimize performance through regularization and model ensemble techniques. The main findings reveal outstanding results on benchmark datasets, with an accuracy of 98.09% and 99.09% on the Weizmann and UCF101 datasets, respectively. These results underscore the model's effectiveness in accurately identifying human activities in movie-based natural environments.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Human activity recognition</subject><subject>Human motion</subject><subject>Image Processing and Computer Vision</subject><subject>Motion perception</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Regularization</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMQfOcWzHI6r4kopY6Gw57qV11SbFdkD997gEiY3phnve93QPIdcMbhmAuosAomQFlLwAzWVZqBMyYRXnBQdRn5IJ6CqvZcXPyUWMGwCoZC0mZPHaL3HruxVNwXax7cMOA7XBrX1Cl4aA9MunNbUpYZd839GtPWQig3Q97GxHrUv-06cDDej6VeeP0CU5a-024tXvnJLF48P77LmYvz29zO7nheNMp4JzraFsl4I1rF5iY6HiKLmunZIoGmmFc_mvqpIKEFqOjiuBWltshAaQfEpuxt596D8GjMls-iF0-aQpNVdM1ULVmSpHyoU-xoCt2Qe_s-FgGJijPjPqM1mf-dFnVA7xMRQz3K0w_FX_k_oG591ztQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Pareek, Gunjan</creator><creator>Nigam, Swati</creator><creator>Singh, Rajiv</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4022-9945</orcidid></search><sort><creationdate>20240401</creationdate><title>Modeling transformer architecture with attention layer for human activity recognition</title><author>Pareek, Gunjan ; Nigam, Swati ; Singh, Rajiv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-339902fd51b18deba043e6398c76e5b6a5cc05244670e0f3ec375e99aeb590063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Human activity recognition</topic><topic>Human motion</topic><topic>Image Processing and Computer Vision</topic><topic>Motion perception</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pareek, Gunjan</creatorcontrib><creatorcontrib>Nigam, Swati</creatorcontrib><creatorcontrib>Singh, Rajiv</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pareek, Gunjan</au><au>Nigam, Swati</au><au>Singh, Rajiv</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling transformer architecture with attention layer for human activity recognition</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>36</volume><issue>10</issue><spage>5515</spage><epage>5528</epage><pages>5515-5528</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Human activity recognition (HAR) is necessary in numerous fields, involving medicine, sports, and security. Traditional HAR methods often rely on complex feature extraction from raw input data, while convolutional neural networks (CNN) are primarily designed for 2D data. The proposed approach seeks to overcome these limitations by leveraging both spatial and temporal attributes for improved action detection and enhancing the understanding of human movements across adjacent frames. This research aims to address the challenges of HAR by introducing a new model that combines a 3D CNN architecture with an attention layer. A 3D convolution transformer is employed to capture intricate spatial and temporal features, generate multiple data channels from input frames, and optimize performance through regularization and model ensemble techniques. The main findings reveal outstanding results on benchmark datasets, with an accuracy of 98.09% and 99.09% on the Weizmann and UCF101 datasets, respectively. These results underscore the model's effectiveness in accurately identifying human activities in movie-based natural environments.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-023-09362-7</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4022-9945</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2024-04, Vol.36 (10), p.5515-5528
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2937178578
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Artificial Intelligence
Artificial neural networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Datasets
Deep learning
Feature extraction
Human activity recognition
Human motion
Image Processing and Computer Vision
Motion perception
Neural networks
Original Article
Probability and Statistics in Computer Science
Regularization
title Modeling transformer architecture with attention layer for human activity recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20transformer%20architecture%20with%20attention%20layer%20for%20human%20activity%20recognition&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Pareek,%20Gunjan&rft.date=2024-04-01&rft.volume=36&rft.issue=10&rft.spage=5515&rft.epage=5528&rft.pages=5515-5528&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-023-09362-7&rft_dat=%3Cproquest_cross%3E2937178578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937178578&rft_id=info:pmid/&rfr_iscdi=true