Average-Case Local Computation Algorithms
We initiate the study of Local Computation Algorithms on average case inputs. In the Local Computation Algorithm (LCA) model, we are given probe access to a huge graph, and asked to answer membership queries about some combinatorial structure on the graph, answering each query with sublinear work. F...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Biswas, Amartya Shankha Cao, Ruidi Pyne, Edward Rubinfeld, Ronitt |
description | We initiate the study of Local Computation Algorithms on average case inputs. In the Local Computation Algorithm (LCA) model, we are given probe access to a huge graph, and asked to answer membership queries about some combinatorial structure on the graph, answering each query with sublinear work. For instance, an LCA for the \(k\)-spanner problem gives access to a sparse subgraph \(H\subseteq G\) that preserves distances up to a factor of \(k\). We build simple LCAs for this problem assuming the input graph is drawn from the well-studied Erdos-Reyni and Preferential Attachment graph models. In both cases, our spanners achieve size and stretch tradeoffs that are impossible to achieve for general graphs, while having dramatically lower query complexity than worst-case LCAs. Our second result investigates the intersection of LCAs with Local Access Generators (LAGs). Local Access Generators provide efficient query access to a random object, for instance an Erdos Reyni random graph. We explore the natural problem of generating a random graph together with a combinatorial structure on it. We show that this combination can be easier to solve than focusing on each problem by itself, by building a fast, simple algorithm that provides access to an Erdos Reyni random graph together with a maximal independent set. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2937126507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937126507</sourcerecordid><originalsourceid>FETCH-proquest_journals_29371265073</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdCxLLUpMT9V1TixOVfDJT07MUXDOzy0oLUksyczPU3DMSc8vyizJyC3mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I0tjc0MjM1MDc2PiVAEAxqMwXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937126507</pqid></control><display><type>article</type><title>Average-Case Local Computation Algorithms</title><source>Freely Accessible Journals</source><creator>Biswas, Amartya Shankha ; Cao, Ruidi ; Pyne, Edward ; Rubinfeld, Ronitt</creator><creatorcontrib>Biswas, Amartya Shankha ; Cao, Ruidi ; Pyne, Edward ; Rubinfeld, Ronitt</creatorcontrib><description>We initiate the study of Local Computation Algorithms on average case inputs. In the Local Computation Algorithm (LCA) model, we are given probe access to a huge graph, and asked to answer membership queries about some combinatorial structure on the graph, answering each query with sublinear work. For instance, an LCA for the \(k\)-spanner problem gives access to a sparse subgraph \(H\subseteq G\) that preserves distances up to a factor of \(k\). We build simple LCAs for this problem assuming the input graph is drawn from the well-studied Erdos-Reyni and Preferential Attachment graph models. In both cases, our spanners achieve size and stretch tradeoffs that are impossible to achieve for general graphs, while having dramatically lower query complexity than worst-case LCAs. Our second result investigates the intersection of LCAs with Local Access Generators (LAGs). Local Access Generators provide efficient query access to a random object, for instance an Erdos Reyni random graph. We explore the natural problem of generating a random graph together with a combinatorial structure on it. We show that this combination can be easier to solve than focusing on each problem by itself, by building a fast, simple algorithm that provides access to an Erdos Reyni random graph together with a maximal independent set.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Combinatorial analysis ; Computation ; Graph theory ; Queries</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Biswas, Amartya Shankha</creatorcontrib><creatorcontrib>Cao, Ruidi</creatorcontrib><creatorcontrib>Pyne, Edward</creatorcontrib><creatorcontrib>Rubinfeld, Ronitt</creatorcontrib><title>Average-Case Local Computation Algorithms</title><title>arXiv.org</title><description>We initiate the study of Local Computation Algorithms on average case inputs. In the Local Computation Algorithm (LCA) model, we are given probe access to a huge graph, and asked to answer membership queries about some combinatorial structure on the graph, answering each query with sublinear work. For instance, an LCA for the \(k\)-spanner problem gives access to a sparse subgraph \(H\subseteq G\) that preserves distances up to a factor of \(k\). We build simple LCAs for this problem assuming the input graph is drawn from the well-studied Erdos-Reyni and Preferential Attachment graph models. In both cases, our spanners achieve size and stretch tradeoffs that are impossible to achieve for general graphs, while having dramatically lower query complexity than worst-case LCAs. Our second result investigates the intersection of LCAs with Local Access Generators (LAGs). Local Access Generators provide efficient query access to a random object, for instance an Erdos Reyni random graph. We explore the natural problem of generating a random graph together with a combinatorial structure on it. We show that this combination can be easier to solve than focusing on each problem by itself, by building a fast, simple algorithm that provides access to an Erdos Reyni random graph together with a maximal independent set.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Computation</subject><subject>Graph theory</subject><subject>Queries</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdCxLLUpMT9V1TixOVfDJT07MUXDOzy0oLUksyczPU3DMSc8vyizJyC3mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I0tjc0MjM1MDc2PiVAEAxqMwXg</recordid><startdate>20240229</startdate><enddate>20240229</enddate><creator>Biswas, Amartya Shankha</creator><creator>Cao, Ruidi</creator><creator>Pyne, Edward</creator><creator>Rubinfeld, Ronitt</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240229</creationdate><title>Average-Case Local Computation Algorithms</title><author>Biswas, Amartya Shankha ; Cao, Ruidi ; Pyne, Edward ; Rubinfeld, Ronitt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29371265073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Computation</topic><topic>Graph theory</topic><topic>Queries</topic><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Amartya Shankha</creatorcontrib><creatorcontrib>Cao, Ruidi</creatorcontrib><creatorcontrib>Pyne, Edward</creatorcontrib><creatorcontrib>Rubinfeld, Ronitt</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Amartya Shankha</au><au>Cao, Ruidi</au><au>Pyne, Edward</au><au>Rubinfeld, Ronitt</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Average-Case Local Computation Algorithms</atitle><jtitle>arXiv.org</jtitle><date>2024-02-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We initiate the study of Local Computation Algorithms on average case inputs. In the Local Computation Algorithm (LCA) model, we are given probe access to a huge graph, and asked to answer membership queries about some combinatorial structure on the graph, answering each query with sublinear work. For instance, an LCA for the \(k\)-spanner problem gives access to a sparse subgraph \(H\subseteq G\) that preserves distances up to a factor of \(k\). We build simple LCAs for this problem assuming the input graph is drawn from the well-studied Erdos-Reyni and Preferential Attachment graph models. In both cases, our spanners achieve size and stretch tradeoffs that are impossible to achieve for general graphs, while having dramatically lower query complexity than worst-case LCAs. Our second result investigates the intersection of LCAs with Local Access Generators (LAGs). Local Access Generators provide efficient query access to a random object, for instance an Erdos Reyni random graph. We explore the natural problem of generating a random graph together with a combinatorial structure on it. We show that this combination can be easier to solve than focusing on each problem by itself, by building a fast, simple algorithm that provides access to an Erdos Reyni random graph together with a maximal independent set.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2937126507 |
source | Freely Accessible Journals |
subjects | Algorithms Combinatorial analysis Computation Graph theory Queries |
title | Average-Case Local Computation Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Average-Case%20Local%20Computation%20Algorithms&rft.jtitle=arXiv.org&rft.au=Biswas,%20Amartya%20Shankha&rft.date=2024-02-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2937126507%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937126507&rft_id=info:pmid/&rfr_iscdi=true |