Unsupervised Anomaly Detection for IoT-Driven Multivariate Time Series on Moringa Leaf Extraction
The extraction of valuable compounds from moringa plants involves complex processes that are highly dependent on various environmental and operational factors. Monitoring these processes using Internet of Things (IoT)-based multivariate time series data presents a unique opportunity for improving ef...
Gespeichert in:
Veröffentlicht in: | International journal of automation technology 2024-03, Vol.18 (2), p.302-315 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 315 |
---|---|
container_issue | 2 |
container_start_page | 302 |
container_title | International journal of automation technology |
container_volume | 18 |
creator | Kurnianingsih Widyowati, Retno Aji, Achmad Fahrul Sato-Shimokawara, Eri Obo, Takenori Kubota, Naoyuki |
description | The extraction of valuable compounds from moringa plants involves complex processes that are highly dependent on various environmental and operational factors. Monitoring these processes using Internet of Things (IoT)-based multivariate time series data presents a unique opportunity for improving efficiency and quality control. Multivariate time series data, characterized by multiple variables recorded over time, provides valuable insights into the behavior, interactions, and dependencies among different components within a system. However, with the increasing complexity and volume of IoT data generated during moringa extraction, the anomaly detection becomes challenging. The objective of this study is to develop a robust and efficient system capable of automatically detecting anomalous patterns in real time, providing early warning signals to operators, and facilitating timely interventions. This paper proposes a novel hybrid unsupervised anomaly detection model combining density-based spatial clustering of applications with noise and
k
-nearest neighbors for IoT-based multivariate time series data. We conducted extensive experiments on real-world moringa extraction, demonstrating the effectiveness and practicality of our proposed approach. In comparison to other anomaly detection methods, our proposed method has the highest precision value of 0.89, the highest recall value of 0.89, and the highest accuracy value of 0.87. Future research will measure and optimize actuators (relays and motors) from anomaly detection to action. It can also be used with forecasting algorithms to detect anomalies in the coming minutes. |
doi_str_mv | 10.20965/ijat.2024.p0302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2934283046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2934283046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-59a29c8ec77ef104974dbdf02d39a640b19f6cf896dc3f60e592c6cb92adf9e53</originalsourceid><addsrcrecordid>eNotkM9PwjAcxRujiQS5e2ziedhf69YjAVQSiAfh3HTdt6YE1tkOIv-9Y3h67_DJe8kHoWdKpowomb_6ven6ysS0JZywOzSiZcmzkjB2P3SaFZKpRzRJyVckp1LQnBcjZHZNOrUQzz5BjWdNOJrDBS-gA9v50GAXIl6FbbaI_gwN3pwOnT-b6E0HeOuPgL8geki4Rzch-ubb4DUYh5e_XTTDxBN6cOaQYPKfY7R7W27nH9n68301n60zK6jsslwZpmwJtijAUSJUIeqqdoTVXBkpSEWVk9aVStaWO0kgV8xKWylmaqcg52P0ctttY_g5Qer0Ppxi019qprhgJSdC9hS5UTaGlCI43UZ_NPGiKdGDS311qa8u9eCS_wG06GlZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2934283046</pqid></control><display><type>article</type><title>Unsupervised Anomaly Detection for IoT-Driven Multivariate Time Series on Moringa Leaf Extraction</title><source>J-STAGE Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kurnianingsih ; Widyowati, Retno ; Aji, Achmad Fahrul ; Sato-Shimokawara, Eri ; Obo, Takenori ; Kubota, Naoyuki</creator><creatorcontrib>Kurnianingsih ; Widyowati, Retno ; Aji, Achmad Fahrul ; Sato-Shimokawara, Eri ; Obo, Takenori ; Kubota, Naoyuki</creatorcontrib><description>The extraction of valuable compounds from moringa plants involves complex processes that are highly dependent on various environmental and operational factors. Monitoring these processes using Internet of Things (IoT)-based multivariate time series data presents a unique opportunity for improving efficiency and quality control. Multivariate time series data, characterized by multiple variables recorded over time, provides valuable insights into the behavior, interactions, and dependencies among different components within a system. However, with the increasing complexity and volume of IoT data generated during moringa extraction, the anomaly detection becomes challenging. The objective of this study is to develop a robust and efficient system capable of automatically detecting anomalous patterns in real time, providing early warning signals to operators, and facilitating timely interventions. This paper proposes a novel hybrid unsupervised anomaly detection model combining density-based spatial clustering of applications with noise and
k
-nearest neighbors for IoT-based multivariate time series data. We conducted extensive experiments on real-world moringa extraction, demonstrating the effectiveness and practicality of our proposed approach. In comparison to other anomaly detection methods, our proposed method has the highest precision value of 0.89, the highest recall value of 0.89, and the highest accuracy value of 0.87. Future research will measure and optimize actuators (relays and motors) from anomaly detection to action. It can also be used with forecasting algorithms to detect anomalies in the coming minutes.</description><identifier>ISSN: 1881-7629</identifier><identifier>EISSN: 1883-8022</identifier><identifier>DOI: 10.20965/ijat.2024.p0302</identifier><language>eng</language><publisher>Tokyo: Fuji Technology Press Co. Ltd</publisher><subject>Actuators ; Algorithms ; Anomalies ; Clustering ; Complexity ; Internet of Things ; Multivariate analysis ; Quality control ; Time series</subject><ispartof>International journal of automation technology, 2024-03, Vol.18 (2), p.302-315</ispartof><rights>Copyright © 2024 Fuji Technology Press Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c416t-59a29c8ec77ef104974dbdf02d39a640b19f6cf896dc3f60e592c6cb92adf9e53</cites><orcidid>0000-0002-6166-1289 ; 0000-0002-3301-2564 ; 0009-0009-0318-470X ; 0000-0001-8829-037X ; 0000-0001-7339-7449 ; 0000-0002-4189-9724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Kurnianingsih</creatorcontrib><creatorcontrib>Widyowati, Retno</creatorcontrib><creatorcontrib>Aji, Achmad Fahrul</creatorcontrib><creatorcontrib>Sato-Shimokawara, Eri</creatorcontrib><creatorcontrib>Obo, Takenori</creatorcontrib><creatorcontrib>Kubota, Naoyuki</creatorcontrib><title>Unsupervised Anomaly Detection for IoT-Driven Multivariate Time Series on Moringa Leaf Extraction</title><title>International journal of automation technology</title><description>The extraction of valuable compounds from moringa plants involves complex processes that are highly dependent on various environmental and operational factors. Monitoring these processes using Internet of Things (IoT)-based multivariate time series data presents a unique opportunity for improving efficiency and quality control. Multivariate time series data, characterized by multiple variables recorded over time, provides valuable insights into the behavior, interactions, and dependencies among different components within a system. However, with the increasing complexity and volume of IoT data generated during moringa extraction, the anomaly detection becomes challenging. The objective of this study is to develop a robust and efficient system capable of automatically detecting anomalous patterns in real time, providing early warning signals to operators, and facilitating timely interventions. This paper proposes a novel hybrid unsupervised anomaly detection model combining density-based spatial clustering of applications with noise and
k
-nearest neighbors for IoT-based multivariate time series data. We conducted extensive experiments on real-world moringa extraction, demonstrating the effectiveness and practicality of our proposed approach. In comparison to other anomaly detection methods, our proposed method has the highest precision value of 0.89, the highest recall value of 0.89, and the highest accuracy value of 0.87. Future research will measure and optimize actuators (relays and motors) from anomaly detection to action. It can also be used with forecasting algorithms to detect anomalies in the coming minutes.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>Clustering</subject><subject>Complexity</subject><subject>Internet of Things</subject><subject>Multivariate analysis</subject><subject>Quality control</subject><subject>Time series</subject><issn>1881-7629</issn><issn>1883-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkM9PwjAcxRujiQS5e2ziedhf69YjAVQSiAfh3HTdt6YE1tkOIv-9Y3h67_DJe8kHoWdKpowomb_6ven6ysS0JZywOzSiZcmzkjB2P3SaFZKpRzRJyVckp1LQnBcjZHZNOrUQzz5BjWdNOJrDBS-gA9v50GAXIl6FbbaI_gwN3pwOnT-b6E0HeOuPgL8geki4Rzch-ubb4DUYh5e_XTTDxBN6cOaQYPKfY7R7W27nH9n68301n60zK6jsslwZpmwJtijAUSJUIeqqdoTVXBkpSEWVk9aVStaWO0kgV8xKWylmaqcg52P0ctttY_g5Qer0Ppxi019qprhgJSdC9hS5UTaGlCI43UZ_NPGiKdGDS311qa8u9eCS_wG06GlZ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Kurnianingsih</creator><creator>Widyowati, Retno</creator><creator>Aji, Achmad Fahrul</creator><creator>Sato-Shimokawara, Eri</creator><creator>Obo, Takenori</creator><creator>Kubota, Naoyuki</creator><general>Fuji Technology Press Co. Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6166-1289</orcidid><orcidid>https://orcid.org/0000-0002-3301-2564</orcidid><orcidid>https://orcid.org/0009-0009-0318-470X</orcidid><orcidid>https://orcid.org/0000-0001-8829-037X</orcidid><orcidid>https://orcid.org/0000-0001-7339-7449</orcidid><orcidid>https://orcid.org/0000-0002-4189-9724</orcidid></search><sort><creationdate>20240301</creationdate><title>Unsupervised Anomaly Detection for IoT-Driven Multivariate Time Series on Moringa Leaf Extraction</title><author>Kurnianingsih ; Widyowati, Retno ; Aji, Achmad Fahrul ; Sato-Shimokawara, Eri ; Obo, Takenori ; Kubota, Naoyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-59a29c8ec77ef104974dbdf02d39a640b19f6cf896dc3f60e592c6cb92adf9e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>Clustering</topic><topic>Complexity</topic><topic>Internet of Things</topic><topic>Multivariate analysis</topic><topic>Quality control</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurnianingsih</creatorcontrib><creatorcontrib>Widyowati, Retno</creatorcontrib><creatorcontrib>Aji, Achmad Fahrul</creatorcontrib><creatorcontrib>Sato-Shimokawara, Eri</creatorcontrib><creatorcontrib>Obo, Takenori</creatorcontrib><creatorcontrib>Kubota, Naoyuki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of automation technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurnianingsih</au><au>Widyowati, Retno</au><au>Aji, Achmad Fahrul</au><au>Sato-Shimokawara, Eri</au><au>Obo, Takenori</au><au>Kubota, Naoyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Anomaly Detection for IoT-Driven Multivariate Time Series on Moringa Leaf Extraction</atitle><jtitle>International journal of automation technology</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><spage>302</spage><epage>315</epage><pages>302-315</pages><issn>1881-7629</issn><eissn>1883-8022</eissn><abstract>The extraction of valuable compounds from moringa plants involves complex processes that are highly dependent on various environmental and operational factors. Monitoring these processes using Internet of Things (IoT)-based multivariate time series data presents a unique opportunity for improving efficiency and quality control. Multivariate time series data, characterized by multiple variables recorded over time, provides valuable insights into the behavior, interactions, and dependencies among different components within a system. However, with the increasing complexity and volume of IoT data generated during moringa extraction, the anomaly detection becomes challenging. The objective of this study is to develop a robust and efficient system capable of automatically detecting anomalous patterns in real time, providing early warning signals to operators, and facilitating timely interventions. This paper proposes a novel hybrid unsupervised anomaly detection model combining density-based spatial clustering of applications with noise and
k
-nearest neighbors for IoT-based multivariate time series data. We conducted extensive experiments on real-world moringa extraction, demonstrating the effectiveness and practicality of our proposed approach. In comparison to other anomaly detection methods, our proposed method has the highest precision value of 0.89, the highest recall value of 0.89, and the highest accuracy value of 0.87. Future research will measure and optimize actuators (relays and motors) from anomaly detection to action. It can also be used with forecasting algorithms to detect anomalies in the coming minutes.</abstract><cop>Tokyo</cop><pub>Fuji Technology Press Co. Ltd</pub><doi>10.20965/ijat.2024.p0302</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6166-1289</orcidid><orcidid>https://orcid.org/0000-0002-3301-2564</orcidid><orcidid>https://orcid.org/0009-0009-0318-470X</orcidid><orcidid>https://orcid.org/0000-0001-8829-037X</orcidid><orcidid>https://orcid.org/0000-0001-7339-7449</orcidid><orcidid>https://orcid.org/0000-0002-4189-9724</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1881-7629 |
ispartof | International journal of automation technology, 2024-03, Vol.18 (2), p.302-315 |
issn | 1881-7629 1883-8022 |
language | eng |
recordid | cdi_proquest_journals_2934283046 |
source | J-STAGE Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Actuators Algorithms Anomalies Clustering Complexity Internet of Things Multivariate analysis Quality control Time series |
title | Unsupervised Anomaly Detection for IoT-Driven Multivariate Time Series on Moringa Leaf Extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Anomaly%20Detection%20for%20IoT-Driven%20Multivariate%20Time%20Series%20on%20Moringa%20Leaf%20Extraction&rft.jtitle=International%20journal%20of%20automation%20technology&rft.au=Kurnianingsih&rft.date=2024-03-01&rft.volume=18&rft.issue=2&rft.spage=302&rft.epage=315&rft.pages=302-315&rft.issn=1881-7629&rft.eissn=1883-8022&rft_id=info:doi/10.20965/ijat.2024.p0302&rft_dat=%3Cproquest_cross%3E2934283046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2934283046&rft_id=info:pmid/&rfr_iscdi=true |