Unsupervised Anomaly Detection for IoT-Driven Multivariate Time Series on Moringa Leaf Extraction

The extraction of valuable compounds from moringa plants involves complex processes that are highly dependent on various environmental and operational factors. Monitoring these processes using Internet of Things (IoT)-based multivariate time series data presents a unique opportunity for improving ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of automation technology 2024-03, Vol.18 (2), p.302-315
Hauptverfasser: Kurnianingsih, Widyowati, Retno, Aji, Achmad Fahrul, Sato-Shimokawara, Eri, Obo, Takenori, Kubota, Naoyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 315
container_issue 2
container_start_page 302
container_title International journal of automation technology
container_volume 18
creator Kurnianingsih
Widyowati, Retno
Aji, Achmad Fahrul
Sato-Shimokawara, Eri
Obo, Takenori
Kubota, Naoyuki
description The extraction of valuable compounds from moringa plants involves complex processes that are highly dependent on various environmental and operational factors. Monitoring these processes using Internet of Things (IoT)-based multivariate time series data presents a unique opportunity for improving efficiency and quality control. Multivariate time series data, characterized by multiple variables recorded over time, provides valuable insights into the behavior, interactions, and dependencies among different components within a system. However, with the increasing complexity and volume of IoT data generated during moringa extraction, the anomaly detection becomes challenging. The objective of this study is to develop a robust and efficient system capable of automatically detecting anomalous patterns in real time, providing early warning signals to operators, and facilitating timely interventions. This paper proposes a novel hybrid unsupervised anomaly detection model combining density-based spatial clustering of applications with noise and k -nearest neighbors for IoT-based multivariate time series data. We conducted extensive experiments on real-world moringa extraction, demonstrating the effectiveness and practicality of our proposed approach. In comparison to other anomaly detection methods, our proposed method has the highest precision value of 0.89, the highest recall value of 0.89, and the highest accuracy value of 0.87. Future research will measure and optimize actuators (relays and motors) from anomaly detection to action. It can also be used with forecasting algorithms to detect anomalies in the coming minutes.
doi_str_mv 10.20965/ijat.2024.p0302
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2934283046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2934283046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-59a29c8ec77ef104974dbdf02d39a640b19f6cf896dc3f60e592c6cb92adf9e53</originalsourceid><addsrcrecordid>eNotkM9PwjAcxRujiQS5e2ziedhf69YjAVQSiAfh3HTdt6YE1tkOIv-9Y3h67_DJe8kHoWdKpowomb_6ven6ysS0JZywOzSiZcmzkjB2P3SaFZKpRzRJyVckp1LQnBcjZHZNOrUQzz5BjWdNOJrDBS-gA9v50GAXIl6FbbaI_gwN3pwOnT-b6E0HeOuPgL8geki4Rzch-ubb4DUYh5e_XTTDxBN6cOaQYPKfY7R7W27nH9n68301n60zK6jsslwZpmwJtijAUSJUIeqqdoTVXBkpSEWVk9aVStaWO0kgV8xKWylmaqcg52P0ctttY_g5Qer0Ppxi019qprhgJSdC9hS5UTaGlCI43UZ_NPGiKdGDS311qa8u9eCS_wG06GlZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2934283046</pqid></control><display><type>article</type><title>Unsupervised Anomaly Detection for IoT-Driven Multivariate Time Series on Moringa Leaf Extraction</title><source>J-STAGE Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kurnianingsih ; Widyowati, Retno ; Aji, Achmad Fahrul ; Sato-Shimokawara, Eri ; Obo, Takenori ; Kubota, Naoyuki</creator><creatorcontrib>Kurnianingsih ; Widyowati, Retno ; Aji, Achmad Fahrul ; Sato-Shimokawara, Eri ; Obo, Takenori ; Kubota, Naoyuki</creatorcontrib><description>The extraction of valuable compounds from moringa plants involves complex processes that are highly dependent on various environmental and operational factors. Monitoring these processes using Internet of Things (IoT)-based multivariate time series data presents a unique opportunity for improving efficiency and quality control. Multivariate time series data, characterized by multiple variables recorded over time, provides valuable insights into the behavior, interactions, and dependencies among different components within a system. However, with the increasing complexity and volume of IoT data generated during moringa extraction, the anomaly detection becomes challenging. The objective of this study is to develop a robust and efficient system capable of automatically detecting anomalous patterns in real time, providing early warning signals to operators, and facilitating timely interventions. This paper proposes a novel hybrid unsupervised anomaly detection model combining density-based spatial clustering of applications with noise and k -nearest neighbors for IoT-based multivariate time series data. We conducted extensive experiments on real-world moringa extraction, demonstrating the effectiveness and practicality of our proposed approach. In comparison to other anomaly detection methods, our proposed method has the highest precision value of 0.89, the highest recall value of 0.89, and the highest accuracy value of 0.87. Future research will measure and optimize actuators (relays and motors) from anomaly detection to action. It can also be used with forecasting algorithms to detect anomalies in the coming minutes.</description><identifier>ISSN: 1881-7629</identifier><identifier>EISSN: 1883-8022</identifier><identifier>DOI: 10.20965/ijat.2024.p0302</identifier><language>eng</language><publisher>Tokyo: Fuji Technology Press Co. Ltd</publisher><subject>Actuators ; Algorithms ; Anomalies ; Clustering ; Complexity ; Internet of Things ; Multivariate analysis ; Quality control ; Time series</subject><ispartof>International journal of automation technology, 2024-03, Vol.18 (2), p.302-315</ispartof><rights>Copyright © 2024 Fuji Technology Press Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c416t-59a29c8ec77ef104974dbdf02d39a640b19f6cf896dc3f60e592c6cb92adf9e53</cites><orcidid>0000-0002-6166-1289 ; 0000-0002-3301-2564 ; 0009-0009-0318-470X ; 0000-0001-8829-037X ; 0000-0001-7339-7449 ; 0000-0002-4189-9724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Kurnianingsih</creatorcontrib><creatorcontrib>Widyowati, Retno</creatorcontrib><creatorcontrib>Aji, Achmad Fahrul</creatorcontrib><creatorcontrib>Sato-Shimokawara, Eri</creatorcontrib><creatorcontrib>Obo, Takenori</creatorcontrib><creatorcontrib>Kubota, Naoyuki</creatorcontrib><title>Unsupervised Anomaly Detection for IoT-Driven Multivariate Time Series on Moringa Leaf Extraction</title><title>International journal of automation technology</title><description>The extraction of valuable compounds from moringa plants involves complex processes that are highly dependent on various environmental and operational factors. Monitoring these processes using Internet of Things (IoT)-based multivariate time series data presents a unique opportunity for improving efficiency and quality control. Multivariate time series data, characterized by multiple variables recorded over time, provides valuable insights into the behavior, interactions, and dependencies among different components within a system. However, with the increasing complexity and volume of IoT data generated during moringa extraction, the anomaly detection becomes challenging. The objective of this study is to develop a robust and efficient system capable of automatically detecting anomalous patterns in real time, providing early warning signals to operators, and facilitating timely interventions. This paper proposes a novel hybrid unsupervised anomaly detection model combining density-based spatial clustering of applications with noise and k -nearest neighbors for IoT-based multivariate time series data. We conducted extensive experiments on real-world moringa extraction, demonstrating the effectiveness and practicality of our proposed approach. In comparison to other anomaly detection methods, our proposed method has the highest precision value of 0.89, the highest recall value of 0.89, and the highest accuracy value of 0.87. Future research will measure and optimize actuators (relays and motors) from anomaly detection to action. It can also be used with forecasting algorithms to detect anomalies in the coming minutes.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>Clustering</subject><subject>Complexity</subject><subject>Internet of Things</subject><subject>Multivariate analysis</subject><subject>Quality control</subject><subject>Time series</subject><issn>1881-7629</issn><issn>1883-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkM9PwjAcxRujiQS5e2ziedhf69YjAVQSiAfh3HTdt6YE1tkOIv-9Y3h67_DJe8kHoWdKpowomb_6ven6ysS0JZywOzSiZcmzkjB2P3SaFZKpRzRJyVckp1LQnBcjZHZNOrUQzz5BjWdNOJrDBS-gA9v50GAXIl6FbbaI_gwN3pwOnT-b6E0HeOuPgL8geki4Rzch-ubb4DUYh5e_XTTDxBN6cOaQYPKfY7R7W27nH9n68301n60zK6jsslwZpmwJtijAUSJUIeqqdoTVXBkpSEWVk9aVStaWO0kgV8xKWylmaqcg52P0ctttY_g5Qer0Ppxi019qprhgJSdC9hS5UTaGlCI43UZ_NPGiKdGDS311qa8u9eCS_wG06GlZ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Kurnianingsih</creator><creator>Widyowati, Retno</creator><creator>Aji, Achmad Fahrul</creator><creator>Sato-Shimokawara, Eri</creator><creator>Obo, Takenori</creator><creator>Kubota, Naoyuki</creator><general>Fuji Technology Press Co. Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6166-1289</orcidid><orcidid>https://orcid.org/0000-0002-3301-2564</orcidid><orcidid>https://orcid.org/0009-0009-0318-470X</orcidid><orcidid>https://orcid.org/0000-0001-8829-037X</orcidid><orcidid>https://orcid.org/0000-0001-7339-7449</orcidid><orcidid>https://orcid.org/0000-0002-4189-9724</orcidid></search><sort><creationdate>20240301</creationdate><title>Unsupervised Anomaly Detection for IoT-Driven Multivariate Time Series on Moringa Leaf Extraction</title><author>Kurnianingsih ; Widyowati, Retno ; Aji, Achmad Fahrul ; Sato-Shimokawara, Eri ; Obo, Takenori ; Kubota, Naoyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-59a29c8ec77ef104974dbdf02d39a640b19f6cf896dc3f60e592c6cb92adf9e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>Clustering</topic><topic>Complexity</topic><topic>Internet of Things</topic><topic>Multivariate analysis</topic><topic>Quality control</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurnianingsih</creatorcontrib><creatorcontrib>Widyowati, Retno</creatorcontrib><creatorcontrib>Aji, Achmad Fahrul</creatorcontrib><creatorcontrib>Sato-Shimokawara, Eri</creatorcontrib><creatorcontrib>Obo, Takenori</creatorcontrib><creatorcontrib>Kubota, Naoyuki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of automation technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurnianingsih</au><au>Widyowati, Retno</au><au>Aji, Achmad Fahrul</au><au>Sato-Shimokawara, Eri</au><au>Obo, Takenori</au><au>Kubota, Naoyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Anomaly Detection for IoT-Driven Multivariate Time Series on Moringa Leaf Extraction</atitle><jtitle>International journal of automation technology</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><spage>302</spage><epage>315</epage><pages>302-315</pages><issn>1881-7629</issn><eissn>1883-8022</eissn><abstract>The extraction of valuable compounds from moringa plants involves complex processes that are highly dependent on various environmental and operational factors. Monitoring these processes using Internet of Things (IoT)-based multivariate time series data presents a unique opportunity for improving efficiency and quality control. Multivariate time series data, characterized by multiple variables recorded over time, provides valuable insights into the behavior, interactions, and dependencies among different components within a system. However, with the increasing complexity and volume of IoT data generated during moringa extraction, the anomaly detection becomes challenging. The objective of this study is to develop a robust and efficient system capable of automatically detecting anomalous patterns in real time, providing early warning signals to operators, and facilitating timely interventions. This paper proposes a novel hybrid unsupervised anomaly detection model combining density-based spatial clustering of applications with noise and k -nearest neighbors for IoT-based multivariate time series data. We conducted extensive experiments on real-world moringa extraction, demonstrating the effectiveness and practicality of our proposed approach. In comparison to other anomaly detection methods, our proposed method has the highest precision value of 0.89, the highest recall value of 0.89, and the highest accuracy value of 0.87. Future research will measure and optimize actuators (relays and motors) from anomaly detection to action. It can also be used with forecasting algorithms to detect anomalies in the coming minutes.</abstract><cop>Tokyo</cop><pub>Fuji Technology Press Co. Ltd</pub><doi>10.20965/ijat.2024.p0302</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6166-1289</orcidid><orcidid>https://orcid.org/0000-0002-3301-2564</orcidid><orcidid>https://orcid.org/0009-0009-0318-470X</orcidid><orcidid>https://orcid.org/0000-0001-8829-037X</orcidid><orcidid>https://orcid.org/0000-0001-7339-7449</orcidid><orcidid>https://orcid.org/0000-0002-4189-9724</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1881-7629
ispartof International journal of automation technology, 2024-03, Vol.18 (2), p.302-315
issn 1881-7629
1883-8022
language eng
recordid cdi_proquest_journals_2934283046
source J-STAGE Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Actuators
Algorithms
Anomalies
Clustering
Complexity
Internet of Things
Multivariate analysis
Quality control
Time series
title Unsupervised Anomaly Detection for IoT-Driven Multivariate Time Series on Moringa Leaf Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Anomaly%20Detection%20for%20IoT-Driven%20Multivariate%20Time%20Series%20on%20Moringa%20Leaf%20Extraction&rft.jtitle=International%20journal%20of%20automation%20technology&rft.au=Kurnianingsih&rft.date=2024-03-01&rft.volume=18&rft.issue=2&rft.spage=302&rft.epage=315&rft.pages=302-315&rft.issn=1881-7629&rft.eissn=1883-8022&rft_id=info:doi/10.20965/ijat.2024.p0302&rft_dat=%3Cproquest_cross%3E2934283046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2934283046&rft_id=info:pmid/&rfr_iscdi=true