Resampling strategies for imbalanced regression: a survey and empirical analysis

Imbalanced problems can arise in different real-world situations, and to address this, certain strategies in the form of resampling or balancing algorithms are proposed. This issue has largely been studied in the context of classification, and yet, the same problem features in regression tasks, wher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Artificial intelligence review 2024-03, Vol.57 (4), p.82, Article 82
Hauptverfasser: Avelino, Juscimara G., Cavalcanti, George D. C., Cruz, Rafael M. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 82
container_title The Artificial intelligence review
container_volume 57
creator Avelino, Juscimara G.
Cavalcanti, George D. C.
Cruz, Rafael M. O.
description Imbalanced problems can arise in different real-world situations, and to address this, certain strategies in the form of resampling or balancing algorithms are proposed. This issue has largely been studied in the context of classification, and yet, the same problem features in regression tasks, where target values are continuous. This work presents an extensive experimental study comprising various balancing and predictive models, and wich uses metrics to capture important elements for the user and to evaluate the predictive model in an imbalanced regression data context. It also proposes a taxonomy for imbalanced regression approaches based on three crucial criteria: regression model, learning process, and evaluation metrics. The study offers new insights into the use of such strategies, highlighting the advantages they bring to each model’s learning process, and indicating directions for further studies. The code, data and further information related to the experiments performed herein can be found on GitHub: https://github.com/JusciAvelino/imbalancedRegression .
doi_str_mv 10.1007/s10462-024-10724-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2934007442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2934007442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b7d18e321073f3e42a52a992269edff4ab5cdd201fed42b0e269248e7ea8d1723</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgejS3aTrupGgVCoroOmQmJ0PK3MyZCn17U0fQlZtz_f_D4SPkkrNrzpi-Qc7UQmRMqIwznaI8IjOea5npND_-U5-SM8QtYywXSs7IyyugbYcmdDXFMdoR6gBIfR9paEvb2K4CRyPUERBD391SS3EXP2FPbecotEOIobJN6myzx4Dn5MTbBuHiJ8_J-8P92-ox2zyvn1Z3m6ySCzlmpXZ8CVKkb6WXoITNhS0KIRYFOO-VLfPKOcG4B6dEySAthFqCBrt0XAs5J1fT3SH2HzvA0Wz7XUxPoBGFVAmKUgeVmFRV7BEjeDPE0Nq4N5yZAzkzkTOJnPkmZ2QyycmESdzVEH9P_-P6Ar2tcYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2934007442</pqid></control><display><type>article</type><title>Resampling strategies for imbalanced regression: a survey and empirical analysis</title><source>Springer Nature OA Free Journals</source><source>Springer Nature - Complete Springer Journals</source><creator>Avelino, Juscimara G. ; Cavalcanti, George D. C. ; Cruz, Rafael M. O.</creator><creatorcontrib>Avelino, Juscimara G. ; Cavalcanti, George D. C. ; Cruz, Rafael M. O.</creatorcontrib><description>Imbalanced problems can arise in different real-world situations, and to address this, certain strategies in the form of resampling or balancing algorithms are proposed. This issue has largely been studied in the context of classification, and yet, the same problem features in regression tasks, where target values are continuous. This work presents an extensive experimental study comprising various balancing and predictive models, and wich uses metrics to capture important elements for the user and to evaluate the predictive model in an imbalanced regression data context. It also proposes a taxonomy for imbalanced regression approaches based on three crucial criteria: regression model, learning process, and evaluation metrics. The study offers new insights into the use of such strategies, highlighting the advantages they bring to each model’s learning process, and indicating directions for further studies. The code, data and further information related to the experiments performed herein can be found on GitHub: https://github.com/JusciAvelino/imbalancedRegression .</description><identifier>ISSN: 1573-7462</identifier><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-024-10724-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Balancing ; Computer Science ; Context ; Empirical analysis ; Learning ; Prediction models ; Regression models ; Resampling ; Taxonomy</subject><ispartof>The Artificial intelligence review, 2024-03, Vol.57 (4), p.82, Article 82</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b7d18e321073f3e42a52a992269edff4ab5cdd201fed42b0e269248e7ea8d1723</citedby><cites>FETCH-LOGICAL-c363t-b7d18e321073f3e42a52a992269edff4ab5cdd201fed42b0e269248e7ea8d1723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10462-024-10724-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s10462-024-10724-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41099,41467,42168,42536,51297,51554</link.rule.ids></links><search><creatorcontrib>Avelino, Juscimara G.</creatorcontrib><creatorcontrib>Cavalcanti, George D. C.</creatorcontrib><creatorcontrib>Cruz, Rafael M. O.</creatorcontrib><title>Resampling strategies for imbalanced regression: a survey and empirical analysis</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><description>Imbalanced problems can arise in different real-world situations, and to address this, certain strategies in the form of resampling or balancing algorithms are proposed. This issue has largely been studied in the context of classification, and yet, the same problem features in regression tasks, where target values are continuous. This work presents an extensive experimental study comprising various balancing and predictive models, and wich uses metrics to capture important elements for the user and to evaluate the predictive model in an imbalanced regression data context. It also proposes a taxonomy for imbalanced regression approaches based on three crucial criteria: regression model, learning process, and evaluation metrics. The study offers new insights into the use of such strategies, highlighting the advantages they bring to each model’s learning process, and indicating directions for further studies. The code, data and further information related to the experiments performed herein can be found on GitHub: https://github.com/JusciAvelino/imbalancedRegression .</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Balancing</subject><subject>Computer Science</subject><subject>Context</subject><subject>Empirical analysis</subject><subject>Learning</subject><subject>Prediction models</subject><subject>Regression models</subject><subject>Resampling</subject><subject>Taxonomy</subject><issn>1573-7462</issn><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4CrgejS3aTrupGgVCoroOmQmJ0PK3MyZCn17U0fQlZtz_f_D4SPkkrNrzpi-Qc7UQmRMqIwznaI8IjOea5npND_-U5-SM8QtYywXSs7IyyugbYcmdDXFMdoR6gBIfR9paEvb2K4CRyPUERBD391SS3EXP2FPbecotEOIobJN6myzx4Dn5MTbBuHiJ8_J-8P92-ox2zyvn1Z3m6ySCzlmpXZ8CVKkb6WXoITNhS0KIRYFOO-VLfPKOcG4B6dEySAthFqCBrt0XAs5J1fT3SH2HzvA0Wz7XUxPoBGFVAmKUgeVmFRV7BEjeDPE0Nq4N5yZAzkzkTOJnPkmZ2QyycmESdzVEH9P_-P6Ar2tcYM</recordid><startdate>20240304</startdate><enddate>20240304</enddate><creator>Avelino, Juscimara G.</creator><creator>Cavalcanti, George D. C.</creator><creator>Cruz, Rafael M. O.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240304</creationdate><title>Resampling strategies for imbalanced regression: a survey and empirical analysis</title><author>Avelino, Juscimara G. ; Cavalcanti, George D. C. ; Cruz, Rafael M. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b7d18e321073f3e42a52a992269edff4ab5cdd201fed42b0e269248e7ea8d1723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Balancing</topic><topic>Computer Science</topic><topic>Context</topic><topic>Empirical analysis</topic><topic>Learning</topic><topic>Prediction models</topic><topic>Regression models</topic><topic>Resampling</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avelino, Juscimara G.</creatorcontrib><creatorcontrib>Cavalcanti, George D. C.</creatorcontrib><creatorcontrib>Cruz, Rafael M. O.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avelino, Juscimara G.</au><au>Cavalcanti, George D. C.</au><au>Cruz, Rafael M. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resampling strategies for imbalanced regression: a survey and empirical analysis</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><date>2024-03-04</date><risdate>2024</risdate><volume>57</volume><issue>4</issue><spage>82</spage><pages>82-</pages><artnum>82</artnum><issn>1573-7462</issn><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>Imbalanced problems can arise in different real-world situations, and to address this, certain strategies in the form of resampling or balancing algorithms are proposed. This issue has largely been studied in the context of classification, and yet, the same problem features in regression tasks, where target values are continuous. This work presents an extensive experimental study comprising various balancing and predictive models, and wich uses metrics to capture important elements for the user and to evaluate the predictive model in an imbalanced regression data context. It also proposes a taxonomy for imbalanced regression approaches based on three crucial criteria: regression model, learning process, and evaluation metrics. The study offers new insights into the use of such strategies, highlighting the advantages they bring to each model’s learning process, and indicating directions for further studies. The code, data and further information related to the experiments performed herein can be found on GitHub: https://github.com/JusciAvelino/imbalancedRegression .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-024-10724-3</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1573-7462
ispartof The Artificial intelligence review, 2024-03, Vol.57 (4), p.82, Article 82
issn 1573-7462
0269-2821
1573-7462
language eng
recordid cdi_proquest_journals_2934007442
source Springer Nature OA Free Journals; Springer Nature - Complete Springer Journals
subjects Algorithms
Artificial Intelligence
Balancing
Computer Science
Context
Empirical analysis
Learning
Prediction models
Regression models
Resampling
Taxonomy
title Resampling strategies for imbalanced regression: a survey and empirical analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resampling%20strategies%20for%20imbalanced%20regression:%20a%20survey%20and%20empirical%20analysis&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Avelino,%20Juscimara%20G.&rft.date=2024-03-04&rft.volume=57&rft.issue=4&rft.spage=82&rft.pages=82-&rft.artnum=82&rft.issn=1573-7462&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-024-10724-3&rft_dat=%3Cproquest_cross%3E2934007442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2934007442&rft_id=info:pmid/&rfr_iscdi=true