Frequency response analysis of the Bautista-Manero-Puig model with normal stress: analytical and numerical solution for large amplitudes

We derive explicit analytical expressions for the recurrence relations using the analytical matrix method for frequency response and the Bautista-Manero-Puig model for complex fluids. The BMP model is derived from the Extended Irreversible Thermodynamics formalism and has been shown to be useful in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rheologica acta 2024-03, Vol.63 (3), p.219-240
Hauptverfasser: Hernandez, E., Bautista, F., García-Sandoval, J. P., Manero, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 240
container_issue 3
container_start_page 219
container_title Rheologica acta
container_volume 63
creator Hernandez, E.
Bautista, F.
García-Sandoval, J. P.
Manero, O.
description We derive explicit analytical expressions for the recurrence relations using the analytical matrix method for frequency response and the Bautista-Manero-Puig model for complex fluids. The BMP model is derived from the Extended Irreversible Thermodynamics formalism and has been shown to be useful in predicting the complex rheological behavior of self-associative systems. All harmonics of the alternating normal and shear stresses in oscillatory shear with various amplitude oscillatory regimes (AOS) can be calculated analytically, i.e., small amplitude oscillatory shear (SAOS), medium amplitude oscillatory shear (MAOS), and large amplitude oscillatory shear (LAOS). We show that incorporating the effects of the first and second normal stress differences for all AOS regimes leads to the emergence of higher harmonics. We establish the limits between the different AOS regimes based on criteria suggested by the analytical method. For some typical systems, such as CTAB-NaSal, we found a satisfactory quantitative agreement with the measured behavior of AOS.
doi_str_mv 10.1007/s00397-024-01434-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933845200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933845200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-bf927d1e0fe6b1530098ce2fbcd1778ed0d95d9da59fa1ac422fc8641e6672f3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVaWWBtsJ2kSdlBRQCqCRfeWG4_bVIldPI5Qb8CxMQSJHSuPPfP_-D9CLgW_FpyXN8h5VpeMy5xxkWc5k0dkkoqCiUJWx2SS-gXLCyFOyRnijnNRzko5IZ-LAO8DuOZAA-DeOwSqne4O2CL1lsYt0Hs9xBajZi_aQfDsbWg3tPcGOvrRxi11PvS6oxiTA96O8tg26Uk7Q93QQ_i5oe-SkXfU-kA7HTZpVb_v2jgYwHNyYnWHcPF7Tslq8bCaP7Hl6-Pz_G7JGlnyyNa2lqURwC3M1qLIOK-rBqRdN0aUZQWGm7owtdFFbbXQTS6lbapZLmCW8tpsSq5G233wKTdGtfNDSD9GJessq_JCJlRTIsepJnjEAFbtQ9vrcFCCq2_gagSuEnD1A1zJJMpGEaZht4HwZ_2P6gvNbobf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933845200</pqid></control><display><type>article</type><title>Frequency response analysis of the Bautista-Manero-Puig model with normal stress: analytical and numerical solution for large amplitudes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hernandez, E. ; Bautista, F. ; García-Sandoval, J. P. ; Manero, O.</creator><creatorcontrib>Hernandez, E. ; Bautista, F. ; García-Sandoval, J. P. ; Manero, O.</creatorcontrib><description>We derive explicit analytical expressions for the recurrence relations using the analytical matrix method for frequency response and the Bautista-Manero-Puig model for complex fluids. The BMP model is derived from the Extended Irreversible Thermodynamics formalism and has been shown to be useful in predicting the complex rheological behavior of self-associative systems. All harmonics of the alternating normal and shear stresses in oscillatory shear with various amplitude oscillatory regimes (AOS) can be calculated analytically, i.e., small amplitude oscillatory shear (SAOS), medium amplitude oscillatory shear (MAOS), and large amplitude oscillatory shear (LAOS). We show that incorporating the effects of the first and second normal stress differences for all AOS regimes leads to the emergence of higher harmonics. We establish the limits between the different AOS regimes based on criteria suggested by the analytical method. For some typical systems, such as CTAB-NaSal, we found a satisfactory quantitative agreement with the measured behavior of AOS.</description><identifier>ISSN: 0035-4511</identifier><identifier>EISSN: 1435-1528</identifier><identifier>DOI: 10.1007/s00397-024-01434-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amplitudes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Flow velocity ; Food Science ; Frequency response ; Higher harmonics ; Materials Science ; Mathematical analysis ; Matrix methods ; Mechanical Engineering ; Normal stress ; Original Contribution ; Polymer Sciences ; Rheological properties ; Rheology ; Shear strain ; Shear stress ; Soft and Granular Matter ; Viscoelasticity</subject><ispartof>Rheologica acta, 2024-03, Vol.63 (3), p.219-240</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-bf927d1e0fe6b1530098ce2fbcd1778ed0d95d9da59fa1ac422fc8641e6672f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00397-024-01434-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00397-024-01434-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hernandez, E.</creatorcontrib><creatorcontrib>Bautista, F.</creatorcontrib><creatorcontrib>García-Sandoval, J. P.</creatorcontrib><creatorcontrib>Manero, O.</creatorcontrib><title>Frequency response analysis of the Bautista-Manero-Puig model with normal stress: analytical and numerical solution for large amplitudes</title><title>Rheologica acta</title><addtitle>Rheol Acta</addtitle><description>We derive explicit analytical expressions for the recurrence relations using the analytical matrix method for frequency response and the Bautista-Manero-Puig model for complex fluids. The BMP model is derived from the Extended Irreversible Thermodynamics formalism and has been shown to be useful in predicting the complex rheological behavior of self-associative systems. All harmonics of the alternating normal and shear stresses in oscillatory shear with various amplitude oscillatory regimes (AOS) can be calculated analytically, i.e., small amplitude oscillatory shear (SAOS), medium amplitude oscillatory shear (MAOS), and large amplitude oscillatory shear (LAOS). We show that incorporating the effects of the first and second normal stress differences for all AOS regimes leads to the emergence of higher harmonics. We establish the limits between the different AOS regimes based on criteria suggested by the analytical method. For some typical systems, such as CTAB-NaSal, we found a satisfactory quantitative agreement with the measured behavior of AOS.</description><subject>Amplitudes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Flow velocity</subject><subject>Food Science</subject><subject>Frequency response</subject><subject>Higher harmonics</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Mechanical Engineering</subject><subject>Normal stress</subject><subject>Original Contribution</subject><subject>Polymer Sciences</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear strain</subject><subject>Shear stress</subject><subject>Soft and Granular Matter</subject><subject>Viscoelasticity</subject><issn>0035-4511</issn><issn>1435-1528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAVaWWBtsJ2kSdlBRQCqCRfeWG4_bVIldPI5Qb8CxMQSJHSuPPfP_-D9CLgW_FpyXN8h5VpeMy5xxkWc5k0dkkoqCiUJWx2SS-gXLCyFOyRnijnNRzko5IZ-LAO8DuOZAA-DeOwSqne4O2CL1lsYt0Hs9xBajZi_aQfDsbWg3tPcGOvrRxi11PvS6oxiTA96O8tg26Uk7Q93QQ_i5oe-SkXfU-kA7HTZpVb_v2jgYwHNyYnWHcPF7Tslq8bCaP7Hl6-Pz_G7JGlnyyNa2lqURwC3M1qLIOK-rBqRdN0aUZQWGm7owtdFFbbXQTS6lbapZLmCW8tpsSq5G233wKTdGtfNDSD9GJessq_JCJlRTIsepJnjEAFbtQ9vrcFCCq2_gagSuEnD1A1zJJMpGEaZht4HwZ_2P6gvNbobf</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Hernandez, E.</creator><creator>Bautista, F.</creator><creator>García-Sandoval, J. P.</creator><creator>Manero, O.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>Frequency response analysis of the Bautista-Manero-Puig model with normal stress: analytical and numerical solution for large amplitudes</title><author>Hernandez, E. ; Bautista, F. ; García-Sandoval, J. P. ; Manero, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-bf927d1e0fe6b1530098ce2fbcd1778ed0d95d9da59fa1ac422fc8641e6672f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amplitudes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Flow velocity</topic><topic>Food Science</topic><topic>Frequency response</topic><topic>Higher harmonics</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Mechanical Engineering</topic><topic>Normal stress</topic><topic>Original Contribution</topic><topic>Polymer Sciences</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear strain</topic><topic>Shear stress</topic><topic>Soft and Granular Matter</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernandez, E.</creatorcontrib><creatorcontrib>Bautista, F.</creatorcontrib><creatorcontrib>García-Sandoval, J. P.</creatorcontrib><creatorcontrib>Manero, O.</creatorcontrib><collection>CrossRef</collection><jtitle>Rheologica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernandez, E.</au><au>Bautista, F.</au><au>García-Sandoval, J. P.</au><au>Manero, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency response analysis of the Bautista-Manero-Puig model with normal stress: analytical and numerical solution for large amplitudes</atitle><jtitle>Rheologica acta</jtitle><stitle>Rheol Acta</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>63</volume><issue>3</issue><spage>219</spage><epage>240</epage><pages>219-240</pages><issn>0035-4511</issn><eissn>1435-1528</eissn><abstract>We derive explicit analytical expressions for the recurrence relations using the analytical matrix method for frequency response and the Bautista-Manero-Puig model for complex fluids. The BMP model is derived from the Extended Irreversible Thermodynamics formalism and has been shown to be useful in predicting the complex rheological behavior of self-associative systems. All harmonics of the alternating normal and shear stresses in oscillatory shear with various amplitude oscillatory regimes (AOS) can be calculated analytically, i.e., small amplitude oscillatory shear (SAOS), medium amplitude oscillatory shear (MAOS), and large amplitude oscillatory shear (LAOS). We show that incorporating the effects of the first and second normal stress differences for all AOS regimes leads to the emergence of higher harmonics. We establish the limits between the different AOS regimes based on criteria suggested by the analytical method. For some typical systems, such as CTAB-NaSal, we found a satisfactory quantitative agreement with the measured behavior of AOS.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00397-024-01434-2</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-4511
ispartof Rheologica acta, 2024-03, Vol.63 (3), p.219-240
issn 0035-4511
1435-1528
language eng
recordid cdi_proquest_journals_2933845200
source SpringerLink Journals - AutoHoldings
subjects Amplitudes
Characterization and Evaluation of Materials
Chemistry and Materials Science
Complex Fluids and Microfluidics
Flow velocity
Food Science
Frequency response
Higher harmonics
Materials Science
Mathematical analysis
Matrix methods
Mechanical Engineering
Normal stress
Original Contribution
Polymer Sciences
Rheological properties
Rheology
Shear strain
Shear stress
Soft and Granular Matter
Viscoelasticity
title Frequency response analysis of the Bautista-Manero-Puig model with normal stress: analytical and numerical solution for large amplitudes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20response%20analysis%20of%20the%20Bautista-Manero-Puig%20model%20with%20normal%20stress:%20analytical%20and%20numerical%20solution%20for%20large%20amplitudes&rft.jtitle=Rheologica%20acta&rft.au=Hernandez,%20E.&rft.date=2024-03-01&rft.volume=63&rft.issue=3&rft.spage=219&rft.epage=240&rft.pages=219-240&rft.issn=0035-4511&rft.eissn=1435-1528&rft_id=info:doi/10.1007/s00397-024-01434-2&rft_dat=%3Cproquest_cross%3E2933845200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933845200&rft_id=info:pmid/&rfr_iscdi=true