Frequency response analysis of the Bautista-Manero-Puig model with normal stress: analytical and numerical solution for large amplitudes
We derive explicit analytical expressions for the recurrence relations using the analytical matrix method for frequency response and the Bautista-Manero-Puig model for complex fluids. The BMP model is derived from the Extended Irreversible Thermodynamics formalism and has been shown to be useful in...
Gespeichert in:
Veröffentlicht in: | Rheologica acta 2024-03, Vol.63 (3), p.219-240 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 240 |
---|---|
container_issue | 3 |
container_start_page | 219 |
container_title | Rheologica acta |
container_volume | 63 |
creator | Hernandez, E. Bautista, F. García-Sandoval, J. P. Manero, O. |
description | We derive explicit analytical expressions for the recurrence relations using the analytical matrix method for frequency response and the Bautista-Manero-Puig model for complex fluids. The BMP model is derived from the Extended Irreversible Thermodynamics formalism and has been shown to be useful in predicting the complex rheological behavior of self-associative systems. All harmonics of the alternating normal and shear stresses in oscillatory shear with various amplitude oscillatory regimes (AOS) can be calculated analytically, i.e., small amplitude oscillatory shear (SAOS), medium amplitude oscillatory shear (MAOS), and large amplitude oscillatory shear (LAOS). We show that incorporating the effects of the first and second normal stress differences for all AOS regimes leads to the emergence of higher harmonics. We establish the limits between the different AOS regimes based on criteria suggested by the analytical method. For some typical systems, such as CTAB-NaSal, we found a satisfactory quantitative agreement with the measured behavior of AOS. |
doi_str_mv | 10.1007/s00397-024-01434-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933845200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933845200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-bf927d1e0fe6b1530098ce2fbcd1778ed0d95d9da59fa1ac422fc8641e6672f3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVaWWBtsJ2kSdlBRQCqCRfeWG4_bVIldPI5Qb8CxMQSJHSuPPfP_-D9CLgW_FpyXN8h5VpeMy5xxkWc5k0dkkoqCiUJWx2SS-gXLCyFOyRnijnNRzko5IZ-LAO8DuOZAA-DeOwSqne4O2CL1lsYt0Hs9xBajZi_aQfDsbWg3tPcGOvrRxi11PvS6oxiTA96O8tg26Uk7Q93QQ_i5oe-SkXfU-kA7HTZpVb_v2jgYwHNyYnWHcPF7Tslq8bCaP7Hl6-Pz_G7JGlnyyNa2lqURwC3M1qLIOK-rBqRdN0aUZQWGm7owtdFFbbXQTS6lbapZLmCW8tpsSq5G233wKTdGtfNDSD9GJessq_JCJlRTIsepJnjEAFbtQ9vrcFCCq2_gagSuEnD1A1zJJMpGEaZht4HwZ_2P6gvNbobf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933845200</pqid></control><display><type>article</type><title>Frequency response analysis of the Bautista-Manero-Puig model with normal stress: analytical and numerical solution for large amplitudes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hernandez, E. ; Bautista, F. ; García-Sandoval, J. P. ; Manero, O.</creator><creatorcontrib>Hernandez, E. ; Bautista, F. ; García-Sandoval, J. P. ; Manero, O.</creatorcontrib><description>We derive explicit analytical expressions for the recurrence relations using the analytical matrix method for frequency response and the Bautista-Manero-Puig model for complex fluids. The BMP model is derived from the Extended Irreversible Thermodynamics formalism and has been shown to be useful in predicting the complex rheological behavior of self-associative systems. All harmonics of the alternating normal and shear stresses in oscillatory shear with various amplitude oscillatory regimes (AOS) can be calculated analytically, i.e., small amplitude oscillatory shear (SAOS), medium amplitude oscillatory shear (MAOS), and large amplitude oscillatory shear (LAOS). We show that incorporating the effects of the first and second normal stress differences for all AOS regimes leads to the emergence of higher harmonics. We establish the limits between the different AOS regimes based on criteria suggested by the analytical method. For some typical systems, such as CTAB-NaSal, we found a satisfactory quantitative agreement with the measured behavior of AOS.</description><identifier>ISSN: 0035-4511</identifier><identifier>EISSN: 1435-1528</identifier><identifier>DOI: 10.1007/s00397-024-01434-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amplitudes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Flow velocity ; Food Science ; Frequency response ; Higher harmonics ; Materials Science ; Mathematical analysis ; Matrix methods ; Mechanical Engineering ; Normal stress ; Original Contribution ; Polymer Sciences ; Rheological properties ; Rheology ; Shear strain ; Shear stress ; Soft and Granular Matter ; Viscoelasticity</subject><ispartof>Rheologica acta, 2024-03, Vol.63 (3), p.219-240</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-bf927d1e0fe6b1530098ce2fbcd1778ed0d95d9da59fa1ac422fc8641e6672f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00397-024-01434-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00397-024-01434-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hernandez, E.</creatorcontrib><creatorcontrib>Bautista, F.</creatorcontrib><creatorcontrib>García-Sandoval, J. P.</creatorcontrib><creatorcontrib>Manero, O.</creatorcontrib><title>Frequency response analysis of the Bautista-Manero-Puig model with normal stress: analytical and numerical solution for large amplitudes</title><title>Rheologica acta</title><addtitle>Rheol Acta</addtitle><description>We derive explicit analytical expressions for the recurrence relations using the analytical matrix method for frequency response and the Bautista-Manero-Puig model for complex fluids. The BMP model is derived from the Extended Irreversible Thermodynamics formalism and has been shown to be useful in predicting the complex rheological behavior of self-associative systems. All harmonics of the alternating normal and shear stresses in oscillatory shear with various amplitude oscillatory regimes (AOS) can be calculated analytically, i.e., small amplitude oscillatory shear (SAOS), medium amplitude oscillatory shear (MAOS), and large amplitude oscillatory shear (LAOS). We show that incorporating the effects of the first and second normal stress differences for all AOS regimes leads to the emergence of higher harmonics. We establish the limits between the different AOS regimes based on criteria suggested by the analytical method. For some typical systems, such as CTAB-NaSal, we found a satisfactory quantitative agreement with the measured behavior of AOS.</description><subject>Amplitudes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Flow velocity</subject><subject>Food Science</subject><subject>Frequency response</subject><subject>Higher harmonics</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Mechanical Engineering</subject><subject>Normal stress</subject><subject>Original Contribution</subject><subject>Polymer Sciences</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear strain</subject><subject>Shear stress</subject><subject>Soft and Granular Matter</subject><subject>Viscoelasticity</subject><issn>0035-4511</issn><issn>1435-1528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAVaWWBtsJ2kSdlBRQCqCRfeWG4_bVIldPI5Qb8CxMQSJHSuPPfP_-D9CLgW_FpyXN8h5VpeMy5xxkWc5k0dkkoqCiUJWx2SS-gXLCyFOyRnijnNRzko5IZ-LAO8DuOZAA-DeOwSqne4O2CL1lsYt0Hs9xBajZi_aQfDsbWg3tPcGOvrRxi11PvS6oxiTA96O8tg26Uk7Q93QQ_i5oe-SkXfU-kA7HTZpVb_v2jgYwHNyYnWHcPF7Tslq8bCaP7Hl6-Pz_G7JGlnyyNa2lqURwC3M1qLIOK-rBqRdN0aUZQWGm7owtdFFbbXQTS6lbapZLmCW8tpsSq5G233wKTdGtfNDSD9GJessq_JCJlRTIsepJnjEAFbtQ9vrcFCCq2_gagSuEnD1A1zJJMpGEaZht4HwZ_2P6gvNbobf</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Hernandez, E.</creator><creator>Bautista, F.</creator><creator>García-Sandoval, J. P.</creator><creator>Manero, O.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>Frequency response analysis of the Bautista-Manero-Puig model with normal stress: analytical and numerical solution for large amplitudes</title><author>Hernandez, E. ; Bautista, F. ; García-Sandoval, J. P. ; Manero, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-bf927d1e0fe6b1530098ce2fbcd1778ed0d95d9da59fa1ac422fc8641e6672f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amplitudes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Flow velocity</topic><topic>Food Science</topic><topic>Frequency response</topic><topic>Higher harmonics</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Mechanical Engineering</topic><topic>Normal stress</topic><topic>Original Contribution</topic><topic>Polymer Sciences</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear strain</topic><topic>Shear stress</topic><topic>Soft and Granular Matter</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernandez, E.</creatorcontrib><creatorcontrib>Bautista, F.</creatorcontrib><creatorcontrib>García-Sandoval, J. P.</creatorcontrib><creatorcontrib>Manero, O.</creatorcontrib><collection>CrossRef</collection><jtitle>Rheologica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernandez, E.</au><au>Bautista, F.</au><au>García-Sandoval, J. P.</au><au>Manero, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency response analysis of the Bautista-Manero-Puig model with normal stress: analytical and numerical solution for large amplitudes</atitle><jtitle>Rheologica acta</jtitle><stitle>Rheol Acta</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>63</volume><issue>3</issue><spage>219</spage><epage>240</epage><pages>219-240</pages><issn>0035-4511</issn><eissn>1435-1528</eissn><abstract>We derive explicit analytical expressions for the recurrence relations using the analytical matrix method for frequency response and the Bautista-Manero-Puig model for complex fluids. The BMP model is derived from the Extended Irreversible Thermodynamics formalism and has been shown to be useful in predicting the complex rheological behavior of self-associative systems. All harmonics of the alternating normal and shear stresses in oscillatory shear with various amplitude oscillatory regimes (AOS) can be calculated analytically, i.e., small amplitude oscillatory shear (SAOS), medium amplitude oscillatory shear (MAOS), and large amplitude oscillatory shear (LAOS). We show that incorporating the effects of the first and second normal stress differences for all AOS regimes leads to the emergence of higher harmonics. We establish the limits between the different AOS regimes based on criteria suggested by the analytical method. For some typical systems, such as CTAB-NaSal, we found a satisfactory quantitative agreement with the measured behavior of AOS.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00397-024-01434-2</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-4511 |
ispartof | Rheologica acta, 2024-03, Vol.63 (3), p.219-240 |
issn | 0035-4511 1435-1528 |
language | eng |
recordid | cdi_proquest_journals_2933845200 |
source | SpringerLink Journals - AutoHoldings |
subjects | Amplitudes Characterization and Evaluation of Materials Chemistry and Materials Science Complex Fluids and Microfluidics Flow velocity Food Science Frequency response Higher harmonics Materials Science Mathematical analysis Matrix methods Mechanical Engineering Normal stress Original Contribution Polymer Sciences Rheological properties Rheology Shear strain Shear stress Soft and Granular Matter Viscoelasticity |
title | Frequency response analysis of the Bautista-Manero-Puig model with normal stress: analytical and numerical solution for large amplitudes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20response%20analysis%20of%20the%20Bautista-Manero-Puig%20model%20with%20normal%20stress:%20analytical%20and%20numerical%20solution%20for%20large%20amplitudes&rft.jtitle=Rheologica%20acta&rft.au=Hernandez,%20E.&rft.date=2024-03-01&rft.volume=63&rft.issue=3&rft.spage=219&rft.epage=240&rft.pages=219-240&rft.issn=0035-4511&rft.eissn=1435-1528&rft_id=info:doi/10.1007/s00397-024-01434-2&rft_dat=%3Cproquest_cross%3E2933845200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933845200&rft_id=info:pmid/&rfr_iscdi=true |