FMR-Net: a fast multi-scale residual network for low-light image enhancement

The low-light image enhancement algorithm aims to solve the problem of poor contrast and low brightness of images in low-light environments. Although many image enhancement algorithms have been proposed, they still face the problems of loss of significant features in the enhanced image, inadequate b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia systems 2024-04, Vol.30 (2), Article 73
Hauptverfasser: Chen, Yuhan, Zhu, Ge, Wang, Xianquan, Shen, Yuhuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Multimedia systems
container_volume 30
creator Chen, Yuhan
Zhu, Ge
Wang, Xianquan
Shen, Yuhuai
description The low-light image enhancement algorithm aims to solve the problem of poor contrast and low brightness of images in low-light environments. Although many image enhancement algorithms have been proposed, they still face the problems of loss of significant features in the enhanced image, inadequate brightness improvement, and a large number of algorithm-specific parameters. To solve the above problems, this paper proposes a Fast Multi-scale Residual Network (FMR-Net) for low-light image enhancement. By superimposing highly optimized residual blocks and designing branching structures, we propose light-weight backbone networks with only 0.014M parameters. In this paper, we design a plug-and-play fast multi-scale residual block for image feature extraction and inference acceleration. Extensive experimental validation shows that the algorithm in this paper can improve the brightness and maintain the contrast of low-light images while keeping a small number of parameters, and achieves superior performance in both subjective vision tests and image quality tests compared to existing methods.
doi_str_mv 10.1007/s00530-023-01252-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933808292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933808292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d2b3f7adcaadad039732af7b1019c026671a764cfaa8715eb335eab2cca7944b3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwApwicQ44Ttu03NDEAGmAhOAcuWm6dXTtSFJNvD2FIXHjZB_-77f1MXYu4VIC6KsAkCoQgEqAxBSFPGATmahxyXM8ZBMoEhRJkeExOwlhDSB1pmDCFvPHF_Hk4jUnXlOIfDO0sRHBUuu4d6GpBmp55-Ku9--87j1v-51om-Uq8mZDS8ddt6LOuo3r4ik7qqkN7ux3Ttnb_PZ1di8Wz3cPs5uFsKghigpLVWuqLFFFFahCK6RalxJkYQGzTEvSWWJrolzL1JVKpY5KtJZ0kSSlmrKLfe_W9x-DC9Gs-8F340mDhVI55FjgmMJ9yvo-BO9qs_Xjy_7TSDDf1szemhmtmR9rRo6Q2kNhDHdL5_-q_6G-AHmlb0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933808292</pqid></control><display><type>article</type><title>FMR-Net: a fast multi-scale residual network for low-light image enhancement</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Yuhan ; Zhu, Ge ; Wang, Xianquan ; Shen, Yuhuai</creator><creatorcontrib>Chen, Yuhan ; Zhu, Ge ; Wang, Xianquan ; Shen, Yuhuai</creatorcontrib><description>The low-light image enhancement algorithm aims to solve the problem of poor contrast and low brightness of images in low-light environments. Although many image enhancement algorithms have been proposed, they still face the problems of loss of significant features in the enhanced image, inadequate brightness improvement, and a large number of algorithm-specific parameters. To solve the above problems, this paper proposes a Fast Multi-scale Residual Network (FMR-Net) for low-light image enhancement. By superimposing highly optimized residual blocks and designing branching structures, we propose light-weight backbone networks with only 0.014M parameters. In this paper, we design a plug-and-play fast multi-scale residual block for image feature extraction and inference acceleration. Extensive experimental validation shows that the algorithm in this paper can improve the brightness and maintain the contrast of low-light images while keeping a small number of parameters, and achieves superior performance in both subjective vision tests and image quality tests compared to existing methods.</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-023-01252-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Brightness ; Computer Communication Networks ; Computer Graphics ; Computer networks ; Computer Science ; Cryptology ; Data Storage Representation ; Feature extraction ; Image contrast ; Image enhancement ; Image quality ; Multimedia Information Systems ; Operating Systems ; Parameters ; Regular Paper ; Weight reduction</subject><ispartof>Multimedia systems, 2024-04, Vol.30 (2), Article 73</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-d2b3f7adcaadad039732af7b1019c026671a764cfaa8715eb335eab2cca7944b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00530-023-01252-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00530-023-01252-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Yuhan</creatorcontrib><creatorcontrib>Zhu, Ge</creatorcontrib><creatorcontrib>Wang, Xianquan</creatorcontrib><creatorcontrib>Shen, Yuhuai</creatorcontrib><title>FMR-Net: a fast multi-scale residual network for low-light image enhancement</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>The low-light image enhancement algorithm aims to solve the problem of poor contrast and low brightness of images in low-light environments. Although many image enhancement algorithms have been proposed, they still face the problems of loss of significant features in the enhanced image, inadequate brightness improvement, and a large number of algorithm-specific parameters. To solve the above problems, this paper proposes a Fast Multi-scale Residual Network (FMR-Net) for low-light image enhancement. By superimposing highly optimized residual blocks and designing branching structures, we propose light-weight backbone networks with only 0.014M parameters. In this paper, we design a plug-and-play fast multi-scale residual block for image feature extraction and inference acceleration. Extensive experimental validation shows that the algorithm in this paper can improve the brightness and maintain the contrast of low-light images while keeping a small number of parameters, and achieves superior performance in both subjective vision tests and image quality tests compared to existing methods.</description><subject>Algorithms</subject><subject>Brightness</subject><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer networks</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Feature extraction</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Multimedia Information Systems</subject><subject>Operating Systems</subject><subject>Parameters</subject><subject>Regular Paper</subject><subject>Weight reduction</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwApwicQ44Ttu03NDEAGmAhOAcuWm6dXTtSFJNvD2FIXHjZB_-77f1MXYu4VIC6KsAkCoQgEqAxBSFPGATmahxyXM8ZBMoEhRJkeExOwlhDSB1pmDCFvPHF_Hk4jUnXlOIfDO0sRHBUuu4d6GpBmp55-Ku9--87j1v-51om-Uq8mZDS8ddt6LOuo3r4ik7qqkN7ux3Ttnb_PZ1di8Wz3cPs5uFsKghigpLVWuqLFFFFahCK6RalxJkYQGzTEvSWWJrolzL1JVKpY5KtJZ0kSSlmrKLfe_W9x-DC9Gs-8F340mDhVI55FjgmMJ9yvo-BO9qs_Xjy_7TSDDf1szemhmtmR9rRo6Q2kNhDHdL5_-q_6G-AHmlb0k</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Chen, Yuhan</creator><creator>Zhu, Ge</creator><creator>Wang, Xianquan</creator><creator>Shen, Yuhuai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>FMR-Net: a fast multi-scale residual network for low-light image enhancement</title><author>Chen, Yuhan ; Zhu, Ge ; Wang, Xianquan ; Shen, Yuhuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d2b3f7adcaadad039732af7b1019c026671a764cfaa8715eb335eab2cca7944b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Brightness</topic><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer networks</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Feature extraction</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Multimedia Information Systems</topic><topic>Operating Systems</topic><topic>Parameters</topic><topic>Regular Paper</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuhan</creatorcontrib><creatorcontrib>Zhu, Ge</creatorcontrib><creatorcontrib>Wang, Xianquan</creatorcontrib><creatorcontrib>Shen, Yuhuai</creatorcontrib><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yuhan</au><au>Zhu, Ge</au><au>Wang, Xianquan</au><au>Shen, Yuhuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FMR-Net: a fast multi-scale residual network for low-light image enhancement</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>30</volume><issue>2</issue><artnum>73</artnum><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>The low-light image enhancement algorithm aims to solve the problem of poor contrast and low brightness of images in low-light environments. Although many image enhancement algorithms have been proposed, they still face the problems of loss of significant features in the enhanced image, inadequate brightness improvement, and a large number of algorithm-specific parameters. To solve the above problems, this paper proposes a Fast Multi-scale Residual Network (FMR-Net) for low-light image enhancement. By superimposing highly optimized residual blocks and designing branching structures, we propose light-weight backbone networks with only 0.014M parameters. In this paper, we design a plug-and-play fast multi-scale residual block for image feature extraction and inference acceleration. Extensive experimental validation shows that the algorithm in this paper can improve the brightness and maintain the contrast of low-light images while keeping a small number of parameters, and achieves superior performance in both subjective vision tests and image quality tests compared to existing methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-023-01252-1</doi></addata></record>
fulltext fulltext
identifier ISSN: 0942-4962
ispartof Multimedia systems, 2024-04, Vol.30 (2), Article 73
issn 0942-4962
1432-1882
language eng
recordid cdi_proquest_journals_2933808292
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Brightness
Computer Communication Networks
Computer Graphics
Computer networks
Computer Science
Cryptology
Data Storage Representation
Feature extraction
Image contrast
Image enhancement
Image quality
Multimedia Information Systems
Operating Systems
Parameters
Regular Paper
Weight reduction
title FMR-Net: a fast multi-scale residual network for low-light image enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FMR-Net:%20a%20fast%20multi-scale%20residual%20network%20for%20low-light%20image%20enhancement&rft.jtitle=Multimedia%20systems&rft.au=Chen,%20Yuhan&rft.date=2024-04-01&rft.volume=30&rft.issue=2&rft.artnum=73&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-023-01252-1&rft_dat=%3Cproquest_cross%3E2933808292%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933808292&rft_id=info:pmid/&rfr_iscdi=true