Digital Twin simulation models: a validation method based on machine learning and control charts
The adoption of simulation models as Digital Twins (DTs) has been standing out in recent years and represents a revolution in decision-making. In this context, we note increasingly faster and more efficient decisions by mirroring the behaviour of physical systems. On the other hand, we highlight the...
Gespeichert in:
Veröffentlicht in: | International journal of production research 2024-04, Vol.62 (7), p.2398-2414 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2414 |
---|---|
container_issue | 7 |
container_start_page | 2398 |
container_title | International journal of production research |
container_volume | 62 |
creator | dos Santos, Carlos Henrique Campos, Afonso Teberga Montevechi, José Arnaldo Barra de Carvalho Miranda, Rafael Costa, Antonio Fernando Branco |
description | The adoption of simulation models as Digital Twins (DTs) has been standing out in recent years and represents a revolution in decision-making. In this context, we note increasingly faster and more efficient decisions by mirroring the behaviour of physical systems. On the other hand, we highlight the challenges to ensure the simulation models validity over time since traditional validation approaches have limitations when we consider the periodic update of the model. Thus, the present work proposes an approach based on the constant assessment of these models through Machine Learning and control charts. To this end, we suggest a monitoring tool using the K-Nearest Neighbors (K-NN) classifier, combined with a p-control chart, to periodically assess the validity of DT simulation models. The proposed approach was tested in several theoretical cases and also implemented in a real case study. The findings suggest that the proposed tool can monitor the DT functioning and identify possible special causes that could compromise its results. Finally, we highlight the wide applicability of the proposed tool, which can be used in different DT models, including near/real-time models with different characteristics regarding connection, integration, and complexity. |
doi_str_mv | 10.1080/00207543.2023.2217299 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933688046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933688046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-c88914178a03a9e3064a82e44d284dd2d12e92613f9a875209711a17b92cb7d3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKuPIARcj-Y2M4krxTsIbrpwF08nmTaSJppMLb69GVpxZxYnnMP3n8uP0Ckl55RIckEII20t-DkjrARGW6bUHppQ3jRVLeXrPpqMTDVCh-go53dSXi3FBL3duoUbwOPZxgWc3WrtYXAx4FU01udLDPgLvDO7oh2W0eA5ZGvwmEO3dMFibyEFFxYYgsFdDEOKHndLSEM-Rgc9-GxPdv8Uze7vZjeP1fPLw9PN9XPVCcGGqpNSUUFbCYSDspw0AiSzQhgmhTHMUGYVayjvFci2ZkS1lAJt54p189bwKTrbtv1I8XNt86Df4zqFMlEzxXkjJRFNoeot1aWYc7K9_khuBelbU6JHL_Wvl3r0Uu-8LDq81dlynMt_qrI0FUIxWZCrLeJCH9MKNjF5owf49jH1CUJXZPz_KT8aPISk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933688046</pqid></control><display><type>article</type><title>Digital Twin simulation models: a validation method based on machine learning and control charts</title><source>Taylor & Francis Journals Complete</source><creator>dos Santos, Carlos Henrique ; Campos, Afonso Teberga ; Montevechi, José Arnaldo Barra ; de Carvalho Miranda, Rafael ; Costa, Antonio Fernando Branco</creator><creatorcontrib>dos Santos, Carlos Henrique ; Campos, Afonso Teberga ; Montevechi, José Arnaldo Barra ; de Carvalho Miranda, Rafael ; Costa, Antonio Fernando Branco</creatorcontrib><description>The adoption of simulation models as Digital Twins (DTs) has been standing out in recent years and represents a revolution in decision-making. In this context, we note increasingly faster and more efficient decisions by mirroring the behaviour of physical systems. On the other hand, we highlight the challenges to ensure the simulation models validity over time since traditional validation approaches have limitations when we consider the periodic update of the model. Thus, the present work proposes an approach based on the constant assessment of these models through Machine Learning and control charts. To this end, we suggest a monitoring tool using the K-Nearest Neighbors (K-NN) classifier, combined with a p-control chart, to periodically assess the validity of DT simulation models. The proposed approach was tested in several theoretical cases and also implemented in a real case study. The findings suggest that the proposed tool can monitor the DT functioning and identify possible special causes that could compromise its results. Finally, we highlight the wide applicability of the proposed tool, which can be used in different DT models, including near/real-time models with different characteristics regarding connection, integration, and complexity.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2023.2217299</identifier><language>eng</language><publisher>London: Taylor & Francis</publisher><subject>Control charts ; Digital Twin ; Digital twins ; K-nearest neighbors algorithm ; K-NN ; Machine learning ; p-control chart ; Simulation ; Simulation models ; validation</subject><ispartof>International journal of production research, 2024-04, Vol.62 (7), p.2398-2414</ispartof><rights>2023 Informa UK Limited, trading as Taylor & Francis Group 2023</rights><rights>2023 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-c88914178a03a9e3064a82e44d284dd2d12e92613f9a875209711a17b92cb7d3</citedby><cites>FETCH-LOGICAL-c442t-c88914178a03a9e3064a82e44d284dd2d12e92613f9a875209711a17b92cb7d3</cites><orcidid>0000-0001-9170-8626 ; 0000-0001-6620-4573 ; 0000-0002-8847-8951 ; 0000-0002-6443-5113 ; 0000-0001-7378-7711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2023.2217299$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2023.2217299$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,59645,60434</link.rule.ids></links><search><creatorcontrib>dos Santos, Carlos Henrique</creatorcontrib><creatorcontrib>Campos, Afonso Teberga</creatorcontrib><creatorcontrib>Montevechi, José Arnaldo Barra</creatorcontrib><creatorcontrib>de Carvalho Miranda, Rafael</creatorcontrib><creatorcontrib>Costa, Antonio Fernando Branco</creatorcontrib><title>Digital Twin simulation models: a validation method based on machine learning and control charts</title><title>International journal of production research</title><description>The adoption of simulation models as Digital Twins (DTs) has been standing out in recent years and represents a revolution in decision-making. In this context, we note increasingly faster and more efficient decisions by mirroring the behaviour of physical systems. On the other hand, we highlight the challenges to ensure the simulation models validity over time since traditional validation approaches have limitations when we consider the periodic update of the model. Thus, the present work proposes an approach based on the constant assessment of these models through Machine Learning and control charts. To this end, we suggest a monitoring tool using the K-Nearest Neighbors (K-NN) classifier, combined with a p-control chart, to periodically assess the validity of DT simulation models. The proposed approach was tested in several theoretical cases and also implemented in a real case study. The findings suggest that the proposed tool can monitor the DT functioning and identify possible special causes that could compromise its results. Finally, we highlight the wide applicability of the proposed tool, which can be used in different DT models, including near/real-time models with different characteristics regarding connection, integration, and complexity.</description><subject>Control charts</subject><subject>Digital Twin</subject><subject>Digital twins</subject><subject>K-nearest neighbors algorithm</subject><subject>K-NN</subject><subject>Machine learning</subject><subject>p-control chart</subject><subject>Simulation</subject><subject>Simulation models</subject><subject>validation</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKuPIARcj-Y2M4krxTsIbrpwF08nmTaSJppMLb69GVpxZxYnnMP3n8uP0Ckl55RIckEII20t-DkjrARGW6bUHppQ3jRVLeXrPpqMTDVCh-go53dSXi3FBL3duoUbwOPZxgWc3WrtYXAx4FU01udLDPgLvDO7oh2W0eA5ZGvwmEO3dMFibyEFFxYYgsFdDEOKHndLSEM-Rgc9-GxPdv8Uze7vZjeP1fPLw9PN9XPVCcGGqpNSUUFbCYSDspw0AiSzQhgmhTHMUGYVayjvFci2ZkS1lAJt54p189bwKTrbtv1I8XNt86Df4zqFMlEzxXkjJRFNoeot1aWYc7K9_khuBelbU6JHL_Wvl3r0Uu-8LDq81dlynMt_qrI0FUIxWZCrLeJCH9MKNjF5owf49jH1CUJXZPz_KT8aPISk</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>dos Santos, Carlos Henrique</creator><creator>Campos, Afonso Teberga</creator><creator>Montevechi, José Arnaldo Barra</creator><creator>de Carvalho Miranda, Rafael</creator><creator>Costa, Antonio Fernando Branco</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9170-8626</orcidid><orcidid>https://orcid.org/0000-0001-6620-4573</orcidid><orcidid>https://orcid.org/0000-0002-8847-8951</orcidid><orcidid>https://orcid.org/0000-0002-6443-5113</orcidid><orcidid>https://orcid.org/0000-0001-7378-7711</orcidid></search><sort><creationdate>20240402</creationdate><title>Digital Twin simulation models: a validation method based on machine learning and control charts</title><author>dos Santos, Carlos Henrique ; Campos, Afonso Teberga ; Montevechi, José Arnaldo Barra ; de Carvalho Miranda, Rafael ; Costa, Antonio Fernando Branco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-c88914178a03a9e3064a82e44d284dd2d12e92613f9a875209711a17b92cb7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control charts</topic><topic>Digital Twin</topic><topic>Digital twins</topic><topic>K-nearest neighbors algorithm</topic><topic>K-NN</topic><topic>Machine learning</topic><topic>p-control chart</topic><topic>Simulation</topic><topic>Simulation models</topic><topic>validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, Carlos Henrique</creatorcontrib><creatorcontrib>Campos, Afonso Teberga</creatorcontrib><creatorcontrib>Montevechi, José Arnaldo Barra</creatorcontrib><creatorcontrib>de Carvalho Miranda, Rafael</creatorcontrib><creatorcontrib>Costa, Antonio Fernando Branco</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos, Carlos Henrique</au><au>Campos, Afonso Teberga</au><au>Montevechi, José Arnaldo Barra</au><au>de Carvalho Miranda, Rafael</au><au>Costa, Antonio Fernando Branco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Twin simulation models: a validation method based on machine learning and control charts</atitle><jtitle>International journal of production research</jtitle><date>2024-04-02</date><risdate>2024</risdate><volume>62</volume><issue>7</issue><spage>2398</spage><epage>2414</epage><pages>2398-2414</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>The adoption of simulation models as Digital Twins (DTs) has been standing out in recent years and represents a revolution in decision-making. In this context, we note increasingly faster and more efficient decisions by mirroring the behaviour of physical systems. On the other hand, we highlight the challenges to ensure the simulation models validity over time since traditional validation approaches have limitations when we consider the periodic update of the model. Thus, the present work proposes an approach based on the constant assessment of these models through Machine Learning and control charts. To this end, we suggest a monitoring tool using the K-Nearest Neighbors (K-NN) classifier, combined with a p-control chart, to periodically assess the validity of DT simulation models. The proposed approach was tested in several theoretical cases and also implemented in a real case study. The findings suggest that the proposed tool can monitor the DT functioning and identify possible special causes that could compromise its results. Finally, we highlight the wide applicability of the proposed tool, which can be used in different DT models, including near/real-time models with different characteristics regarding connection, integration, and complexity.</abstract><cop>London</cop><pub>Taylor & Francis</pub><doi>10.1080/00207543.2023.2217299</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9170-8626</orcidid><orcidid>https://orcid.org/0000-0001-6620-4573</orcidid><orcidid>https://orcid.org/0000-0002-8847-8951</orcidid><orcidid>https://orcid.org/0000-0002-6443-5113</orcidid><orcidid>https://orcid.org/0000-0001-7378-7711</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7543 |
ispartof | International journal of production research, 2024-04, Vol.62 (7), p.2398-2414 |
issn | 0020-7543 1366-588X |
language | eng |
recordid | cdi_proquest_journals_2933688046 |
source | Taylor & Francis Journals Complete |
subjects | Control charts Digital Twin Digital twins K-nearest neighbors algorithm K-NN Machine learning p-control chart Simulation Simulation models validation |
title | Digital Twin simulation models: a validation method based on machine learning and control charts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Twin%20simulation%20models:%20a%20validation%20method%20based%20on%20machine%20learning%20and%20control%20charts&rft.jtitle=International%20journal%20of%20production%20research&rft.au=dos%20Santos,%20Carlos%20Henrique&rft.date=2024-04-02&rft.volume=62&rft.issue=7&rft.spage=2398&rft.epage=2414&rft.pages=2398-2414&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2023.2217299&rft_dat=%3Cproquest_cross%3E2933688046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933688046&rft_id=info:pmid/&rfr_iscdi=true |