Digital Twin simulation models: a validation method based on machine learning and control charts

The adoption of simulation models as Digital Twins (DTs) has been standing out in recent years and represents a revolution in decision-making. In this context, we note increasingly faster and more efficient decisions by mirroring the behaviour of physical systems. On the other hand, we highlight the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2024-04, Vol.62 (7), p.2398-2414
Hauptverfasser: dos Santos, Carlos Henrique, Campos, Afonso Teberga, Montevechi, José Arnaldo Barra, de Carvalho Miranda, Rafael, Costa, Antonio Fernando Branco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2414
container_issue 7
container_start_page 2398
container_title International journal of production research
container_volume 62
creator dos Santos, Carlos Henrique
Campos, Afonso Teberga
Montevechi, José Arnaldo Barra
de Carvalho Miranda, Rafael
Costa, Antonio Fernando Branco
description The adoption of simulation models as Digital Twins (DTs) has been standing out in recent years and represents a revolution in decision-making. In this context, we note increasingly faster and more efficient decisions by mirroring the behaviour of physical systems. On the other hand, we highlight the challenges to ensure the simulation models validity over time since traditional validation approaches have limitations when we consider the periodic update of the model. Thus, the present work proposes an approach based on the constant assessment of these models through Machine Learning and control charts. To this end, we suggest a monitoring tool using the K-Nearest Neighbors (K-NN) classifier, combined with a p-control chart, to periodically assess the validity of DT simulation models. The proposed approach was tested in several theoretical cases and also implemented in a real case study. The findings suggest that the proposed tool can monitor the DT functioning and identify possible special causes that could compromise its results. Finally, we highlight the wide applicability of the proposed tool, which can be used in different DT models, including near/real-time models with different characteristics regarding connection, integration, and complexity.
doi_str_mv 10.1080/00207543.2023.2217299
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933688046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933688046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-c88914178a03a9e3064a82e44d284dd2d12e92613f9a875209711a17b92cb7d3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKuPIARcj-Y2M4krxTsIbrpwF08nmTaSJppMLb69GVpxZxYnnMP3n8uP0Ckl55RIckEII20t-DkjrARGW6bUHppQ3jRVLeXrPpqMTDVCh-go53dSXi3FBL3duoUbwOPZxgWc3WrtYXAx4FU01udLDPgLvDO7oh2W0eA5ZGvwmEO3dMFibyEFFxYYgsFdDEOKHndLSEM-Rgc9-GxPdv8Uze7vZjeP1fPLw9PN9XPVCcGGqpNSUUFbCYSDspw0AiSzQhgmhTHMUGYVayjvFci2ZkS1lAJt54p189bwKTrbtv1I8XNt86Df4zqFMlEzxXkjJRFNoeot1aWYc7K9_khuBelbU6JHL_Wvl3r0Uu-8LDq81dlynMt_qrI0FUIxWZCrLeJCH9MKNjF5owf49jH1CUJXZPz_KT8aPISk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933688046</pqid></control><display><type>article</type><title>Digital Twin simulation models: a validation method based on machine learning and control charts</title><source>Taylor &amp; Francis Journals Complete</source><creator>dos Santos, Carlos Henrique ; Campos, Afonso Teberga ; Montevechi, José Arnaldo Barra ; de Carvalho Miranda, Rafael ; Costa, Antonio Fernando Branco</creator><creatorcontrib>dos Santos, Carlos Henrique ; Campos, Afonso Teberga ; Montevechi, José Arnaldo Barra ; de Carvalho Miranda, Rafael ; Costa, Antonio Fernando Branco</creatorcontrib><description>The adoption of simulation models as Digital Twins (DTs) has been standing out in recent years and represents a revolution in decision-making. In this context, we note increasingly faster and more efficient decisions by mirroring the behaviour of physical systems. On the other hand, we highlight the challenges to ensure the simulation models validity over time since traditional validation approaches have limitations when we consider the periodic update of the model. Thus, the present work proposes an approach based on the constant assessment of these models through Machine Learning and control charts. To this end, we suggest a monitoring tool using the K-Nearest Neighbors (K-NN) classifier, combined with a p-control chart, to periodically assess the validity of DT simulation models. The proposed approach was tested in several theoretical cases and also implemented in a real case study. The findings suggest that the proposed tool can monitor the DT functioning and identify possible special causes that could compromise its results. Finally, we highlight the wide applicability of the proposed tool, which can be used in different DT models, including near/real-time models with different characteristics regarding connection, integration, and complexity.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2023.2217299</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>Control charts ; Digital Twin ; Digital twins ; K-nearest neighbors algorithm ; K-NN ; Machine learning ; p-control chart ; Simulation ; Simulation models ; validation</subject><ispartof>International journal of production research, 2024-04, Vol.62 (7), p.2398-2414</ispartof><rights>2023 Informa UK Limited, trading as Taylor &amp; Francis Group 2023</rights><rights>2023 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-c88914178a03a9e3064a82e44d284dd2d12e92613f9a875209711a17b92cb7d3</citedby><cites>FETCH-LOGICAL-c442t-c88914178a03a9e3064a82e44d284dd2d12e92613f9a875209711a17b92cb7d3</cites><orcidid>0000-0001-9170-8626 ; 0000-0001-6620-4573 ; 0000-0002-8847-8951 ; 0000-0002-6443-5113 ; 0000-0001-7378-7711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2023.2217299$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2023.2217299$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,59645,60434</link.rule.ids></links><search><creatorcontrib>dos Santos, Carlos Henrique</creatorcontrib><creatorcontrib>Campos, Afonso Teberga</creatorcontrib><creatorcontrib>Montevechi, José Arnaldo Barra</creatorcontrib><creatorcontrib>de Carvalho Miranda, Rafael</creatorcontrib><creatorcontrib>Costa, Antonio Fernando Branco</creatorcontrib><title>Digital Twin simulation models: a validation method based on machine learning and control charts</title><title>International journal of production research</title><description>The adoption of simulation models as Digital Twins (DTs) has been standing out in recent years and represents a revolution in decision-making. In this context, we note increasingly faster and more efficient decisions by mirroring the behaviour of physical systems. On the other hand, we highlight the challenges to ensure the simulation models validity over time since traditional validation approaches have limitations when we consider the periodic update of the model. Thus, the present work proposes an approach based on the constant assessment of these models through Machine Learning and control charts. To this end, we suggest a monitoring tool using the K-Nearest Neighbors (K-NN) classifier, combined with a p-control chart, to periodically assess the validity of DT simulation models. The proposed approach was tested in several theoretical cases and also implemented in a real case study. The findings suggest that the proposed tool can monitor the DT functioning and identify possible special causes that could compromise its results. Finally, we highlight the wide applicability of the proposed tool, which can be used in different DT models, including near/real-time models with different characteristics regarding connection, integration, and complexity.</description><subject>Control charts</subject><subject>Digital Twin</subject><subject>Digital twins</subject><subject>K-nearest neighbors algorithm</subject><subject>K-NN</subject><subject>Machine learning</subject><subject>p-control chart</subject><subject>Simulation</subject><subject>Simulation models</subject><subject>validation</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKuPIARcj-Y2M4krxTsIbrpwF08nmTaSJppMLb69GVpxZxYnnMP3n8uP0Ckl55RIckEII20t-DkjrARGW6bUHppQ3jRVLeXrPpqMTDVCh-go53dSXi3FBL3duoUbwOPZxgWc3WrtYXAx4FU01udLDPgLvDO7oh2W0eA5ZGvwmEO3dMFibyEFFxYYgsFdDEOKHndLSEM-Rgc9-GxPdv8Uze7vZjeP1fPLw9PN9XPVCcGGqpNSUUFbCYSDspw0AiSzQhgmhTHMUGYVayjvFci2ZkS1lAJt54p189bwKTrbtv1I8XNt86Df4zqFMlEzxXkjJRFNoeot1aWYc7K9_khuBelbU6JHL_Wvl3r0Uu-8LDq81dlynMt_qrI0FUIxWZCrLeJCH9MKNjF5owf49jH1CUJXZPz_KT8aPISk</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>dos Santos, Carlos Henrique</creator><creator>Campos, Afonso Teberga</creator><creator>Montevechi, José Arnaldo Barra</creator><creator>de Carvalho Miranda, Rafael</creator><creator>Costa, Antonio Fernando Branco</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9170-8626</orcidid><orcidid>https://orcid.org/0000-0001-6620-4573</orcidid><orcidid>https://orcid.org/0000-0002-8847-8951</orcidid><orcidid>https://orcid.org/0000-0002-6443-5113</orcidid><orcidid>https://orcid.org/0000-0001-7378-7711</orcidid></search><sort><creationdate>20240402</creationdate><title>Digital Twin simulation models: a validation method based on machine learning and control charts</title><author>dos Santos, Carlos Henrique ; Campos, Afonso Teberga ; Montevechi, José Arnaldo Barra ; de Carvalho Miranda, Rafael ; Costa, Antonio Fernando Branco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-c88914178a03a9e3064a82e44d284dd2d12e92613f9a875209711a17b92cb7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control charts</topic><topic>Digital Twin</topic><topic>Digital twins</topic><topic>K-nearest neighbors algorithm</topic><topic>K-NN</topic><topic>Machine learning</topic><topic>p-control chart</topic><topic>Simulation</topic><topic>Simulation models</topic><topic>validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, Carlos Henrique</creatorcontrib><creatorcontrib>Campos, Afonso Teberga</creatorcontrib><creatorcontrib>Montevechi, José Arnaldo Barra</creatorcontrib><creatorcontrib>de Carvalho Miranda, Rafael</creatorcontrib><creatorcontrib>Costa, Antonio Fernando Branco</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos, Carlos Henrique</au><au>Campos, Afonso Teberga</au><au>Montevechi, José Arnaldo Barra</au><au>de Carvalho Miranda, Rafael</au><au>Costa, Antonio Fernando Branco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Twin simulation models: a validation method based on machine learning and control charts</atitle><jtitle>International journal of production research</jtitle><date>2024-04-02</date><risdate>2024</risdate><volume>62</volume><issue>7</issue><spage>2398</spage><epage>2414</epage><pages>2398-2414</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>The adoption of simulation models as Digital Twins (DTs) has been standing out in recent years and represents a revolution in decision-making. In this context, we note increasingly faster and more efficient decisions by mirroring the behaviour of physical systems. On the other hand, we highlight the challenges to ensure the simulation models validity over time since traditional validation approaches have limitations when we consider the periodic update of the model. Thus, the present work proposes an approach based on the constant assessment of these models through Machine Learning and control charts. To this end, we suggest a monitoring tool using the K-Nearest Neighbors (K-NN) classifier, combined with a p-control chart, to periodically assess the validity of DT simulation models. The proposed approach was tested in several theoretical cases and also implemented in a real case study. The findings suggest that the proposed tool can monitor the DT functioning and identify possible special causes that could compromise its results. Finally, we highlight the wide applicability of the proposed tool, which can be used in different DT models, including near/real-time models with different characteristics regarding connection, integration, and complexity.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00207543.2023.2217299</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9170-8626</orcidid><orcidid>https://orcid.org/0000-0001-6620-4573</orcidid><orcidid>https://orcid.org/0000-0002-8847-8951</orcidid><orcidid>https://orcid.org/0000-0002-6443-5113</orcidid><orcidid>https://orcid.org/0000-0001-7378-7711</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2024-04, Vol.62 (7), p.2398-2414
issn 0020-7543
1366-588X
language eng
recordid cdi_proquest_journals_2933688046
source Taylor & Francis Journals Complete
subjects Control charts
Digital Twin
Digital twins
K-nearest neighbors algorithm
K-NN
Machine learning
p-control chart
Simulation
Simulation models
validation
title Digital Twin simulation models: a validation method based on machine learning and control charts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Twin%20simulation%20models:%20a%20validation%20method%20based%20on%20machine%20learning%20and%20control%20charts&rft.jtitle=International%20journal%20of%20production%20research&rft.au=dos%20Santos,%20Carlos%20Henrique&rft.date=2024-04-02&rft.volume=62&rft.issue=7&rft.spage=2398&rft.epage=2414&rft.pages=2398-2414&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2023.2217299&rft_dat=%3Cproquest_cross%3E2933688046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933688046&rft_id=info:pmid/&rfr_iscdi=true