Three-dimensional porous CoNiO2@reduced graphene oxide nanosheet arrays/nickel foam as a highly efficient bifunctional electrocatalyst for overall water splitting

It is crucial to develop high-performance and cost-effective bifunctional electrocatalysts for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) toward overall water splitting. Herein, a unique heterostructure of reduced graphene oxide (rGO) and CoNiO 2 nanosheets directly g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tungsten 2020-12, Vol.2 (4), p.390-402
Hauptverfasser: Pan, Zhi-Yi, Tang, Zheng, Zhan, Yong-Zhong, Sun, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 402
container_issue 4
container_start_page 390
container_title Tungsten
container_volume 2
creator Pan, Zhi-Yi
Tang, Zheng
Zhan, Yong-Zhong
Sun, Dan
description It is crucial to develop high-performance and cost-effective bifunctional electrocatalysts for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) toward overall water splitting. Herein, a unique heterostructure of reduced graphene oxide (rGO) and CoNiO 2 nanosheets directly grown on nickel foam (NF) were successfully fabricated and applied as a kind of highly efficient bifunctional electrocatalyst. The optimum CoNiO 2 @rGO/NF electrode exhibits excellent electrocatalytic OER performance with an overpotential of only 272 mV to drive a current density of 100 mA·cm −2 , and HER performance with an overpotential of 126 mV to achieve a current density of 10 mA·cm −2 . Meanwhile, the electrodes also display outstanding long-term stability for OER and HER with negligible activity and morphology degradation after at least 40 h testing. Furthermore, when employed as both cathode and anode for overall water splitting, CoNiO 2 @rGO/NF electrode only requires 1.56 V at 10 mA·cm −2 and operates stably for over 40 h, which is among the best performing Co-based and Ni-based non-precious metal electrocatalysts. Detailed characterizations reveal that the extraordinary electrocatalytic performance should be attributed to the synergistic effect of the unique heterostructure of CoNiO 2 nanosheets and rGO for increasing the electrode conductivity and integrity, ultrasmall primary particle size for providing larger electrode/electrolyte contact area and abundant active sites, and three-dimensional (3D) conductive networks for facilitating the electrochemical reaction.
doi_str_mv 10.1007/s42864-020-00065-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933636325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933636325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4349becc00b8e4d90c61a83eeed47912b2f9fbdf212216c051cf5b895e3127ed3</originalsourceid><addsrcrecordid>eNp9kc9O3DAQxqOqSEWUF-jJEuew_pNkkxtoVQrSqnuhZ8txxhtvvXY6dmj3dXhSDKnorZrDzOH3fTOaryi-MHrNKF2vYsXbpioppyWltKlL8aE4503DypaK5uP7zNtPxWWMhwzxuqOMr8-L58cRAcrBHsFHG7xyZAoY5kg24bvd8RuEYdYwkD2qaQQPJPyxAxCvfIgjQCIKUZ3iylv9ExwxQR2JikSR0e5HdyJgjNUWfCK9NbPXaVkCDnTCoFVS7hRT1iEJT4DKOfJbJUASJ2dTsn7_uTgzykW4_Nsvih93Xx839-V29-1hc7sttWBdKitRdT1oTWnfQjV0VDdMtQIAhmrdMd5z05l-MJxxzhpNa6ZN3bddDSJ_AgZxUVwtvhOGXzPEJA9hxnxslLwTosnF60zxhdIYYkQwckJ7VHiSjMrXOOQSh8xxyLc4pMgisYhihv0e8J_1f1QvIPqRpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933636325</pqid></control><display><type>article</type><title>Three-dimensional porous CoNiO2@reduced graphene oxide nanosheet arrays/nickel foam as a highly efficient bifunctional electrocatalyst for overall water splitting</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Pan, Zhi-Yi ; Tang, Zheng ; Zhan, Yong-Zhong ; Sun, Dan</creator><creatorcontrib>Pan, Zhi-Yi ; Tang, Zheng ; Zhan, Yong-Zhong ; Sun, Dan</creatorcontrib><description>It is crucial to develop high-performance and cost-effective bifunctional electrocatalysts for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) toward overall water splitting. Herein, a unique heterostructure of reduced graphene oxide (rGO) and CoNiO 2 nanosheets directly grown on nickel foam (NF) were successfully fabricated and applied as a kind of highly efficient bifunctional electrocatalyst. The optimum CoNiO 2 @rGO/NF electrode exhibits excellent electrocatalytic OER performance with an overpotential of only 272 mV to drive a current density of 100 mA·cm −2 , and HER performance with an overpotential of 126 mV to achieve a current density of 10 mA·cm −2 . Meanwhile, the electrodes also display outstanding long-term stability for OER and HER with negligible activity and morphology degradation after at least 40 h testing. Furthermore, when employed as both cathode and anode for overall water splitting, CoNiO 2 @rGO/NF electrode only requires 1.56 V at 10 mA·cm −2 and operates stably for over 40 h, which is among the best performing Co-based and Ni-based non-precious metal electrocatalysts. Detailed characterizations reveal that the extraordinary electrocatalytic performance should be attributed to the synergistic effect of the unique heterostructure of CoNiO 2 nanosheets and rGO for increasing the electrode conductivity and integrity, ultrasmall primary particle size for providing larger electrode/electrolyte contact area and abundant active sites, and three-dimensional (3D) conductive networks for facilitating the electrochemical reaction.</description><identifier>ISSN: 2661-8028</identifier><identifier>EISSN: 2661-8036</identifier><identifier>DOI: 10.1007/s42864-020-00065-3</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Chemistry and Materials Science ; Current density ; Electrocatalysts ; Electrodes ; Electrolytes ; Energy ; Ethanol ; Graphene ; Heterostructures ; Hydrogen evolution reactions ; Materials Engineering ; Materials Science ; Metal foams ; Metal oxides ; Metallic Materials ; Nanosheets ; Nickel ; Nuclear Chemistry ; Original Paper ; Oxygen evolution reactions ; Particle and Nuclear Physics ; Radiation ; Spectrum analysis ; Stainless steel ; Synergistic effect ; Voltammetry ; Water splitting</subject><ispartof>Tungsten, 2020-12, Vol.2 (4), p.390-402</ispartof><rights>The Nonferrous Metals Society of China 2020</rights><rights>The Nonferrous Metals Society of China 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4349becc00b8e4d90c61a83eeed47912b2f9fbdf212216c051cf5b895e3127ed3</citedby><cites>FETCH-LOGICAL-c319t-4349becc00b8e4d90c61a83eeed47912b2f9fbdf212216c051cf5b895e3127ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42864-020-00065-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2933636325?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Pan, Zhi-Yi</creatorcontrib><creatorcontrib>Tang, Zheng</creatorcontrib><creatorcontrib>Zhan, Yong-Zhong</creatorcontrib><creatorcontrib>Sun, Dan</creatorcontrib><title>Three-dimensional porous CoNiO2@reduced graphene oxide nanosheet arrays/nickel foam as a highly efficient bifunctional electrocatalyst for overall water splitting</title><title>Tungsten</title><addtitle>Tungsten</addtitle><description>It is crucial to develop high-performance and cost-effective bifunctional electrocatalysts for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) toward overall water splitting. Herein, a unique heterostructure of reduced graphene oxide (rGO) and CoNiO 2 nanosheets directly grown on nickel foam (NF) were successfully fabricated and applied as a kind of highly efficient bifunctional electrocatalyst. The optimum CoNiO 2 @rGO/NF electrode exhibits excellent electrocatalytic OER performance with an overpotential of only 272 mV to drive a current density of 100 mA·cm −2 , and HER performance with an overpotential of 126 mV to achieve a current density of 10 mA·cm −2 . Meanwhile, the electrodes also display outstanding long-term stability for OER and HER with negligible activity and morphology degradation after at least 40 h testing. Furthermore, when employed as both cathode and anode for overall water splitting, CoNiO 2 @rGO/NF electrode only requires 1.56 V at 10 mA·cm −2 and operates stably for over 40 h, which is among the best performing Co-based and Ni-based non-precious metal electrocatalysts. Detailed characterizations reveal that the extraordinary electrocatalytic performance should be attributed to the synergistic effect of the unique heterostructure of CoNiO 2 nanosheets and rGO for increasing the electrode conductivity and integrity, ultrasmall primary particle size for providing larger electrode/electrolyte contact area and abundant active sites, and three-dimensional (3D) conductive networks for facilitating the electrochemical reaction.</description><subject>Chemistry and Materials Science</subject><subject>Current density</subject><subject>Electrocatalysts</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Ethanol</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Hydrogen evolution reactions</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metal foams</subject><subject>Metal oxides</subject><subject>Metallic Materials</subject><subject>Nanosheets</subject><subject>Nickel</subject><subject>Nuclear Chemistry</subject><subject>Original Paper</subject><subject>Oxygen evolution reactions</subject><subject>Particle and Nuclear Physics</subject><subject>Radiation</subject><subject>Spectrum analysis</subject><subject>Stainless steel</subject><subject>Synergistic effect</subject><subject>Voltammetry</subject><subject>Water splitting</subject><issn>2661-8028</issn><issn>2661-8036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc9O3DAQxqOqSEWUF-jJEuew_pNkkxtoVQrSqnuhZ8txxhtvvXY6dmj3dXhSDKnorZrDzOH3fTOaryi-MHrNKF2vYsXbpioppyWltKlL8aE4503DypaK5uP7zNtPxWWMhwzxuqOMr8-L58cRAcrBHsFHG7xyZAoY5kg24bvd8RuEYdYwkD2qaQQPJPyxAxCvfIgjQCIKUZ3iylv9ExwxQR2JikSR0e5HdyJgjNUWfCK9NbPXaVkCDnTCoFVS7hRT1iEJT4DKOfJbJUASJ2dTsn7_uTgzykW4_Nsvih93Xx839-V29-1hc7sttWBdKitRdT1oTWnfQjV0VDdMtQIAhmrdMd5z05l-MJxxzhpNa6ZN3bddDSJ_AgZxUVwtvhOGXzPEJA9hxnxslLwTosnF60zxhdIYYkQwckJ7VHiSjMrXOOQSh8xxyLc4pMgisYhihv0e8J_1f1QvIPqRpA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Pan, Zhi-Yi</creator><creator>Tang, Zheng</creator><creator>Zhan, Yong-Zhong</creator><creator>Sun, Dan</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20201201</creationdate><title>Three-dimensional porous CoNiO2@reduced graphene oxide nanosheet arrays/nickel foam as a highly efficient bifunctional electrocatalyst for overall water splitting</title><author>Pan, Zhi-Yi ; Tang, Zheng ; Zhan, Yong-Zhong ; Sun, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4349becc00b8e4d90c61a83eeed47912b2f9fbdf212216c051cf5b895e3127ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry and Materials Science</topic><topic>Current density</topic><topic>Electrocatalysts</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Ethanol</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Hydrogen evolution reactions</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metal foams</topic><topic>Metal oxides</topic><topic>Metallic Materials</topic><topic>Nanosheets</topic><topic>Nickel</topic><topic>Nuclear Chemistry</topic><topic>Original Paper</topic><topic>Oxygen evolution reactions</topic><topic>Particle and Nuclear Physics</topic><topic>Radiation</topic><topic>Spectrum analysis</topic><topic>Stainless steel</topic><topic>Synergistic effect</topic><topic>Voltammetry</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Zhi-Yi</creatorcontrib><creatorcontrib>Tang, Zheng</creatorcontrib><creatorcontrib>Zhan, Yong-Zhong</creatorcontrib><creatorcontrib>Sun, Dan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Tungsten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Zhi-Yi</au><au>Tang, Zheng</au><au>Zhan, Yong-Zhong</au><au>Sun, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional porous CoNiO2@reduced graphene oxide nanosheet arrays/nickel foam as a highly efficient bifunctional electrocatalyst for overall water splitting</atitle><jtitle>Tungsten</jtitle><stitle>Tungsten</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>2</volume><issue>4</issue><spage>390</spage><epage>402</epage><pages>390-402</pages><issn>2661-8028</issn><eissn>2661-8036</eissn><abstract>It is crucial to develop high-performance and cost-effective bifunctional electrocatalysts for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) toward overall water splitting. Herein, a unique heterostructure of reduced graphene oxide (rGO) and CoNiO 2 nanosheets directly grown on nickel foam (NF) were successfully fabricated and applied as a kind of highly efficient bifunctional electrocatalyst. The optimum CoNiO 2 @rGO/NF electrode exhibits excellent electrocatalytic OER performance with an overpotential of only 272 mV to drive a current density of 100 mA·cm −2 , and HER performance with an overpotential of 126 mV to achieve a current density of 10 mA·cm −2 . Meanwhile, the electrodes also display outstanding long-term stability for OER and HER with negligible activity and morphology degradation after at least 40 h testing. Furthermore, when employed as both cathode and anode for overall water splitting, CoNiO 2 @rGO/NF electrode only requires 1.56 V at 10 mA·cm −2 and operates stably for over 40 h, which is among the best performing Co-based and Ni-based non-precious metal electrocatalysts. Detailed characterizations reveal that the extraordinary electrocatalytic performance should be attributed to the synergistic effect of the unique heterostructure of CoNiO 2 nanosheets and rGO for increasing the electrode conductivity and integrity, ultrasmall primary particle size for providing larger electrode/electrolyte contact area and abundant active sites, and three-dimensional (3D) conductive networks for facilitating the electrochemical reaction.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s42864-020-00065-3</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2661-8028
ispartof Tungsten, 2020-12, Vol.2 (4), p.390-402
issn 2661-8028
2661-8036
language eng
recordid cdi_proquest_journals_2933636325
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Chemistry and Materials Science
Current density
Electrocatalysts
Electrodes
Electrolytes
Energy
Ethanol
Graphene
Heterostructures
Hydrogen evolution reactions
Materials Engineering
Materials Science
Metal foams
Metal oxides
Metallic Materials
Nanosheets
Nickel
Nuclear Chemistry
Original Paper
Oxygen evolution reactions
Particle and Nuclear Physics
Radiation
Spectrum analysis
Stainless steel
Synergistic effect
Voltammetry
Water splitting
title Three-dimensional porous CoNiO2@reduced graphene oxide nanosheet arrays/nickel foam as a highly efficient bifunctional electrocatalyst for overall water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20porous%20CoNiO2@reduced%20graphene%20oxide%20nanosheet%20arrays/nickel%20foam%20as%20a%20highly%20efficient%20bifunctional%20electrocatalyst%20for%20overall%20water%20splitting&rft.jtitle=Tungsten&rft.au=Pan,%20Zhi-Yi&rft.date=2020-12-01&rft.volume=2&rft.issue=4&rft.spage=390&rft.epage=402&rft.pages=390-402&rft.issn=2661-8028&rft.eissn=2661-8036&rft_id=info:doi/10.1007/s42864-020-00065-3&rft_dat=%3Cproquest_cross%3E2933636325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933636325&rft_id=info:pmid/&rfr_iscdi=true