Schottky Barrier Height Modification of Graphene/Ge by Al2O3 Interfacial Layer and Au Nanoparticles for High-Gain Short-Wavelength Infrared Photodetectors
The metal/germanium (Ge) photodetectors have garnered significant attention for their potential applications in ON-chip optoelectronics. However, the severe Fermi-level pinning effect (FLPE) on the Ge surface makes it difficult to suppress dark current and improve photoresponsivity. To address these...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2024-03, Vol.71 (3), p.2159-2164 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2164 |
---|---|
container_issue | 3 |
container_start_page | 2159 |
container_title | IEEE transactions on electron devices |
container_volume | 71 |
creator | Ding, Haokun Li, Shuo Wu, Songsong Yang, Tianwei Lin, Guangyang Li, Cheng |
description | The metal/germanium (Ge) photodetectors have garnered significant attention for their potential applications in ON-chip optoelectronics. However, the severe Fermi-level pinning effect (FLPE) on the Ge surface makes it difficult to suppress dark current and improve photoresponsivity. To address these issues, an ultrathin dielectric layer (2-nm-thick Al2O3) is introduced between metal and Ge to mitigate the FLPE. Additionally, monolayer graphene (Gr) decorated with Au nanoparticles (NPs) serves as a transparent electrode to enhance the responsivity of the photodetector. The responsivities of the Au NPs decorated Gr/Ge junction photodetectors are significantly improved to 7528 and 7115 A/W at 1310 and 1550 nm, respectively, under dim light illumination at room temperature. The corresponding specific detectivities reach up to 4.59\times 10^{{11}} cm \cdot Hz ^{\text {1/2}} \cdot \text{W}^{-{1}} and 4.4\times 10^{{11}} cm \cdot Hz ^{\text {1/2}} \cdot \text{W}^{-{1}} , respectively. These results demonstrate that the combination of 2-D and 3-D materials is an effective strategy for high-performance photodetectors working in short-wave infrared (SWIR) bands at a low cost. |
doi_str_mv | 10.1109/TED.2024.3350568 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2933610147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10400998</ieee_id><sourcerecordid>2933610147</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-155558f65039b7f425526f4c0baba780a8917acd4e6fc2292757a4c9ee97a63</originalsourceid><addsrcrecordid>eNotj01rGzEQhkVpoW6aew89CHJeR9-7OjpuagecpmBDjmasHXnlbFauVi74r-TXRuCchhee95kZQn5wNuWc2dvN_a-pYEJNpdRMm-YTmXCt68oaZT6TCWO8qaxs5FfybRwPJRqlxIS8rV0Xc3450ztIKWCiSwz7LtPH2AYfHOQQBxo9XSQ4djjg7QLp7kxnvXiS9GHImDy4AD1dwbm0YWjp7ET_wBCPkHJwPY7Ux6It1moBYaDrLqZcPcN_7HHY565YfIKELf1bToktZnQ5pvE7-eKhH_H6Y16R9e_7zXxZrZ4WD_PZqgpcqlyVL7VuvNFM2l3tldBaGK8c28EO6oZBY3kNrlVovBPCilrXoJxFtDUYeUVuLtZjiv9OOObtIZ7SUBZuhZXScMZVXaifFyog4vaYwiuk85YzxZi1jXwHcSxzfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933610147</pqid></control><display><type>article</type><title>Schottky Barrier Height Modification of Graphene/Ge by Al2O3 Interfacial Layer and Au Nanoparticles for High-Gain Short-Wavelength Infrared Photodetectors</title><source>IEEE Electronic Library (IEL)</source><creator>Ding, Haokun ; Li, Shuo ; Wu, Songsong ; Yang, Tianwei ; Lin, Guangyang ; Li, Cheng</creator><creatorcontrib>Ding, Haokun ; Li, Shuo ; Wu, Songsong ; Yang, Tianwei ; Lin, Guangyang ; Li, Cheng</creatorcontrib><description><![CDATA[The metal/germanium (Ge) photodetectors have garnered significant attention for their potential applications in ON-chip optoelectronics. However, the severe Fermi-level pinning effect (FLPE) on the Ge surface makes it difficult to suppress dark current and improve photoresponsivity. To address these issues, an ultrathin dielectric layer (2-nm-thick Al2O3) is introduced between metal and Ge to mitigate the FLPE. Additionally, monolayer graphene (Gr) decorated with Au nanoparticles (NPs) serves as a transparent electrode to enhance the responsivity of the photodetector. The responsivities of the Au NPs decorated Gr/Ge junction photodetectors are significantly improved to 7528 and 7115 A/W at 1310 and 1550 nm, respectively, under dim light illumination at room temperature. The corresponding specific detectivities reach up to <inline-formula> <tex-math notation="LaTeX">4.59\times 10^{{11}} </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">\cdot </tex-math></inline-formula>Hz<inline-formula> <tex-math notation="LaTeX">^{\text {1/2}} \cdot \text{W}^{-{1}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">4.4\times 10^{{11}} </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">\cdot </tex-math></inline-formula>Hz<inline-formula> <tex-math notation="LaTeX">^{\text {1/2}} \cdot \text{W}^{-{1}} </tex-math></inline-formula>, respectively. These results demonstrate that the combination of 2-D and 3-D materials is an effective strategy for high-performance photodetectors working in short-wave infrared (SWIR) bands at a low cost.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3350568</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum oxide ; Dark current ; Fermi level ; Germanium ; Germanium (Ge) photodetector ; Gold ; Graphene ; High gain ; Infrared detectors ; Junctions ; Metals ; mixed-dimensional junction ; monolayer graphene (Gr) ; Nanoparticles ; Optoelectronics ; Photodetectors ; Photometers ; Room temperature ; Schottky barrier height (SBH) modulation ; Short wave radiation ; short-wave infrared (SWIR) detection</subject><ispartof>IEEE transactions on electron devices, 2024-03, Vol.71 (3), p.2159-2164</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8405-3369 ; 0009-0001-7062-5423 ; 0000-0003-1794-2427 ; 0000-0002-1774-049X ; 0000-0003-1784-5029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10400998$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10400998$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ding, Haokun</creatorcontrib><creatorcontrib>Li, Shuo</creatorcontrib><creatorcontrib>Wu, Songsong</creatorcontrib><creatorcontrib>Yang, Tianwei</creatorcontrib><creatorcontrib>Lin, Guangyang</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><title>Schottky Barrier Height Modification of Graphene/Ge by Al2O3 Interfacial Layer and Au Nanoparticles for High-Gain Short-Wavelength Infrared Photodetectors</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[The metal/germanium (Ge) photodetectors have garnered significant attention for their potential applications in ON-chip optoelectronics. However, the severe Fermi-level pinning effect (FLPE) on the Ge surface makes it difficult to suppress dark current and improve photoresponsivity. To address these issues, an ultrathin dielectric layer (2-nm-thick Al2O3) is introduced between metal and Ge to mitigate the FLPE. Additionally, monolayer graphene (Gr) decorated with Au nanoparticles (NPs) serves as a transparent electrode to enhance the responsivity of the photodetector. The responsivities of the Au NPs decorated Gr/Ge junction photodetectors are significantly improved to 7528 and 7115 A/W at 1310 and 1550 nm, respectively, under dim light illumination at room temperature. The corresponding specific detectivities reach up to <inline-formula> <tex-math notation="LaTeX">4.59\times 10^{{11}} </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">\cdot </tex-math></inline-formula>Hz<inline-formula> <tex-math notation="LaTeX">^{\text {1/2}} \cdot \text{W}^{-{1}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">4.4\times 10^{{11}} </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">\cdot </tex-math></inline-formula>Hz<inline-formula> <tex-math notation="LaTeX">^{\text {1/2}} \cdot \text{W}^{-{1}} </tex-math></inline-formula>, respectively. These results demonstrate that the combination of 2-D and 3-D materials is an effective strategy for high-performance photodetectors working in short-wave infrared (SWIR) bands at a low cost.]]></description><subject>Aluminum oxide</subject><subject>Dark current</subject><subject>Fermi level</subject><subject>Germanium</subject><subject>Germanium (Ge) photodetector</subject><subject>Gold</subject><subject>Graphene</subject><subject>High gain</subject><subject>Infrared detectors</subject><subject>Junctions</subject><subject>Metals</subject><subject>mixed-dimensional junction</subject><subject>monolayer graphene (Gr)</subject><subject>Nanoparticles</subject><subject>Optoelectronics</subject><subject>Photodetectors</subject><subject>Photometers</subject><subject>Room temperature</subject><subject>Schottky barrier height (SBH) modulation</subject><subject>Short wave radiation</subject><subject>short-wave infrared (SWIR) detection</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotj01rGzEQhkVpoW6aew89CHJeR9-7OjpuagecpmBDjmasHXnlbFauVi74r-TXRuCchhee95kZQn5wNuWc2dvN_a-pYEJNpdRMm-YTmXCt68oaZT6TCWO8qaxs5FfybRwPJRqlxIS8rV0Xc3450ztIKWCiSwz7LtPH2AYfHOQQBxo9XSQ4djjg7QLp7kxnvXiS9GHImDy4AD1dwbm0YWjp7ET_wBCPkHJwPY7Ux6It1moBYaDrLqZcPcN_7HHY565YfIKELf1bToktZnQ5pvE7-eKhH_H6Y16R9e_7zXxZrZ4WD_PZqgpcqlyVL7VuvNFM2l3tldBaGK8c28EO6oZBY3kNrlVovBPCilrXoJxFtDUYeUVuLtZjiv9OOObtIZ7SUBZuhZXScMZVXaifFyog4vaYwiuk85YzxZi1jXwHcSxzfA</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Ding, Haokun</creator><creator>Li, Shuo</creator><creator>Wu, Songsong</creator><creator>Yang, Tianwei</creator><creator>Lin, Guangyang</creator><creator>Li, Cheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8405-3369</orcidid><orcidid>https://orcid.org/0009-0001-7062-5423</orcidid><orcidid>https://orcid.org/0000-0003-1794-2427</orcidid><orcidid>https://orcid.org/0000-0002-1774-049X</orcidid><orcidid>https://orcid.org/0000-0003-1784-5029</orcidid></search><sort><creationdate>202403</creationdate><title>Schottky Barrier Height Modification of Graphene/Ge by Al2O3 Interfacial Layer and Au Nanoparticles for High-Gain Short-Wavelength Infrared Photodetectors</title><author>Ding, Haokun ; Li, Shuo ; Wu, Songsong ; Yang, Tianwei ; Lin, Guangyang ; Li, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-155558f65039b7f425526f4c0baba780a8917acd4e6fc2292757a4c9ee97a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum oxide</topic><topic>Dark current</topic><topic>Fermi level</topic><topic>Germanium</topic><topic>Germanium (Ge) photodetector</topic><topic>Gold</topic><topic>Graphene</topic><topic>High gain</topic><topic>Infrared detectors</topic><topic>Junctions</topic><topic>Metals</topic><topic>mixed-dimensional junction</topic><topic>monolayer graphene (Gr)</topic><topic>Nanoparticles</topic><topic>Optoelectronics</topic><topic>Photodetectors</topic><topic>Photometers</topic><topic>Room temperature</topic><topic>Schottky barrier height (SBH) modulation</topic><topic>Short wave radiation</topic><topic>short-wave infrared (SWIR) detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Haokun</creatorcontrib><creatorcontrib>Li, Shuo</creatorcontrib><creatorcontrib>Wu, Songsong</creatorcontrib><creatorcontrib>Yang, Tianwei</creatorcontrib><creatorcontrib>Lin, Guangyang</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ding, Haokun</au><au>Li, Shuo</au><au>Wu, Songsong</au><au>Yang, Tianwei</au><au>Lin, Guangyang</au><au>Li, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schottky Barrier Height Modification of Graphene/Ge by Al2O3 Interfacial Layer and Au Nanoparticles for High-Gain Short-Wavelength Infrared Photodetectors</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-03</date><risdate>2024</risdate><volume>71</volume><issue>3</issue><spage>2159</spage><epage>2164</epage><pages>2159-2164</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[The metal/germanium (Ge) photodetectors have garnered significant attention for their potential applications in ON-chip optoelectronics. However, the severe Fermi-level pinning effect (FLPE) on the Ge surface makes it difficult to suppress dark current and improve photoresponsivity. To address these issues, an ultrathin dielectric layer (2-nm-thick Al2O3) is introduced between metal and Ge to mitigate the FLPE. Additionally, monolayer graphene (Gr) decorated with Au nanoparticles (NPs) serves as a transparent electrode to enhance the responsivity of the photodetector. The responsivities of the Au NPs decorated Gr/Ge junction photodetectors are significantly improved to 7528 and 7115 A/W at 1310 and 1550 nm, respectively, under dim light illumination at room temperature. The corresponding specific detectivities reach up to <inline-formula> <tex-math notation="LaTeX">4.59\times 10^{{11}} </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">\cdot </tex-math></inline-formula>Hz<inline-formula> <tex-math notation="LaTeX">^{\text {1/2}} \cdot \text{W}^{-{1}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">4.4\times 10^{{11}} </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">\cdot </tex-math></inline-formula>Hz<inline-formula> <tex-math notation="LaTeX">^{\text {1/2}} \cdot \text{W}^{-{1}} </tex-math></inline-formula>, respectively. These results demonstrate that the combination of 2-D and 3-D materials is an effective strategy for high-performance photodetectors working in short-wave infrared (SWIR) bands at a low cost.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2024.3350568</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8405-3369</orcidid><orcidid>https://orcid.org/0009-0001-7062-5423</orcidid><orcidid>https://orcid.org/0000-0003-1794-2427</orcidid><orcidid>https://orcid.org/0000-0002-1774-049X</orcidid><orcidid>https://orcid.org/0000-0003-1784-5029</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2024-03, Vol.71 (3), p.2159-2164 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_2933610147 |
source | IEEE Electronic Library (IEL) |
subjects | Aluminum oxide Dark current Fermi level Germanium Germanium (Ge) photodetector Gold Graphene High gain Infrared detectors Junctions Metals mixed-dimensional junction monolayer graphene (Gr) Nanoparticles Optoelectronics Photodetectors Photometers Room temperature Schottky barrier height (SBH) modulation Short wave radiation short-wave infrared (SWIR) detection |
title | Schottky Barrier Height Modification of Graphene/Ge by Al2O3 Interfacial Layer and Au Nanoparticles for High-Gain Short-Wavelength Infrared Photodetectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schottky%20Barrier%20Height%20Modification%20of%20Graphene/Ge%20by%20Al2O3%20Interfacial%20Layer%20and%20Au%20Nanoparticles%20for%20High-Gain%20Short-Wavelength%20Infrared%20Photodetectors&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Ding,%20Haokun&rft.date=2024-03&rft.volume=71&rft.issue=3&rft.spage=2159&rft.epage=2164&rft.pages=2159-2164&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3350568&rft_dat=%3Cproquest_RIE%3E2933610147%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933610147&rft_id=info:pmid/&rft_ieee_id=10400998&rfr_iscdi=true |