Gauss–Newton With Preconditioned Conjugate Gradient Magnetotelluric Inversion for 3-D Axial Anisotropic Conductivities
We present a regularized inversion method for 3-D magnetotelluric (MT) data with axial anisotropic conductivities based on the edge-based finite element (FE) method. The Gauss–Newton (GN) approach is used to minimize the inversion objective function, including data misfit and regularization penaltie...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Zhou, Junjun Bai, Ningbo Han, Bo Hu, Xiangyun Xiao, Tiaojie Huang, Guoshu Li, Jianping |
description | We present a regularized inversion method for 3-D magnetotelluric (MT) data with axial anisotropic conductivities based on the edge-based finite element (FE) method. The Gauss–Newton (GN) approach is used to minimize the inversion objective function, including data misfit and regularization penalties, considering both structural complexity and anisotropic penalties. The most time-intensive task in the 3-D MT inversion process is solving the large sparse system of linear equations. To speed up the inversion calculation, a hybrid direct–iterative solver combined with a block-diagonal preconditioner that has not yet been applied in anisotropic inversion is developed to accelerate the solutions for the sparse linear system resulting from forward modeling and sensitivity computations. In each GN iteration, a preconditioned conjugate gradient (PCG) method is adopted to overcome the difficulty in the sensitivity matrix storage for the anisotropic scene and obtain a model update without explicitly calculating and storing the sensitivity matrix. Before the inversion test, we use a model to demonstrate that the hybrid solver is computationally beneficial in terms of memory usage and time spent when compared with the direct solver. The good convergence properties and efficiency of the Gauss–Newton with the conjugate gradient (GN–PCG) inversion scheme are demonstrated by two synthetic models and USArray data. The proposed inversion scheme can be an important supplement to existing anisotropic inversion algorithms and provide technical support for MT data interpretation. |
doi_str_mv | 10.1109/TGRS.2024.3367378 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933608680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933608680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-504ae2b8d078cdd7843aea1e1ec729fc066140d1f9e753ab86de2c4c9aa6c9843</originalsourceid><addsrcrecordid>eNotkMtKAzEYRoMoWKsP4C7gemqSuWWWpepYqBe04nJIk39qypjUJFPrznfwDX0SU-rq2xzOBwehc0pGlJLqcl4_PY8YYdkoTYsyLfkBGtA85wkpsuwQDQitioTxih2jE-9XhNAsp-UAbWvRe__7_XMPn8Ea_KrDG350IK1ROmhrQOGJNat-KQLg2gmlwQR8J5YGgg3Qdb3TEk_NBpyPOG6tw2lyhcdbLTo8Ntrb4Ow6MlGjehn0JnrBn6KjVnQezv53iF5urueT22T2UE8n41kiGctDkpNMAFtwRUoulSp5lgoQFCjIklWtJEVBM6JoW0GZp2LBCwVMZrISopBVpIfoYu9dO_vRgw_NyvbOxMuGVbEV4QUnkaJ7SjrrvYO2WTv9LtxXQ0mzC9zsAje7wM1_4PQPcvFx0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933608680</pqid></control><display><type>article</type><title>Gauss–Newton With Preconditioned Conjugate Gradient Magnetotelluric Inversion for 3-D Axial Anisotropic Conductivities</title><source>IEEE Electronic Library Online</source><creator>Zhou, Junjun ; Bai, Ningbo ; Han, Bo ; Hu, Xiangyun ; Xiao, Tiaojie ; Huang, Guoshu ; Li, Jianping</creator><creatorcontrib>Zhou, Junjun ; Bai, Ningbo ; Han, Bo ; Hu, Xiangyun ; Xiao, Tiaojie ; Huang, Guoshu ; Li, Jianping</creatorcontrib><description>We present a regularized inversion method for 3-D magnetotelluric (MT) data with axial anisotropic conductivities based on the edge-based finite element (FE) method. The Gauss–Newton (GN) approach is used to minimize the inversion objective function, including data misfit and regularization penalties, considering both structural complexity and anisotropic penalties. The most time-intensive task in the 3-D MT inversion process is solving the large sparse system of linear equations. To speed up the inversion calculation, a hybrid direct–iterative solver combined with a block-diagonal preconditioner that has not yet been applied in anisotropic inversion is developed to accelerate the solutions for the sparse linear system resulting from forward modeling and sensitivity computations. In each GN iteration, a preconditioned conjugate gradient (PCG) method is adopted to overcome the difficulty in the sensitivity matrix storage for the anisotropic scene and obtain a model update without explicitly calculating and storing the sensitivity matrix. Before the inversion test, we use a model to demonstrate that the hybrid solver is computationally beneficial in terms of memory usage and time spent when compared with the direct solver. The good convergence properties and efficiency of the Gauss–Newton with the conjugate gradient (GN–PCG) inversion scheme are demonstrated by two synthetic models and USArray data. The proposed inversion scheme can be an important supplement to existing anisotropic inversion algorithms and provide technical support for MT data interpretation.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3367378</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; Anisotropy ; Aquatic reptiles ; Conjugate gradient method ; Data interpretation ; Fines & penalties ; Finite element method ; Iterative methods ; Linear equations ; Objective function ; Regularization ; Sensitivity ; Solvers ; Storage ; Technical services</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-504ae2b8d078cdd7843aea1e1ec729fc066140d1f9e753ab86de2c4c9aa6c9843</cites><orcidid>0000-0001-5560-2250 ; 0000-0003-0242-9129 ; 0000-0003-3623-8304 ; 0000-0003-1582-6094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhou, Junjun</creatorcontrib><creatorcontrib>Bai, Ningbo</creatorcontrib><creatorcontrib>Han, Bo</creatorcontrib><creatorcontrib>Hu, Xiangyun</creatorcontrib><creatorcontrib>Xiao, Tiaojie</creatorcontrib><creatorcontrib>Huang, Guoshu</creatorcontrib><creatorcontrib>Li, Jianping</creatorcontrib><title>Gauss–Newton With Preconditioned Conjugate Gradient Magnetotelluric Inversion for 3-D Axial Anisotropic Conductivities</title><title>IEEE transactions on geoscience and remote sensing</title><description>We present a regularized inversion method for 3-D magnetotelluric (MT) data with axial anisotropic conductivities based on the edge-based finite element (FE) method. The Gauss–Newton (GN) approach is used to minimize the inversion objective function, including data misfit and regularization penalties, considering both structural complexity and anisotropic penalties. The most time-intensive task in the 3-D MT inversion process is solving the large sparse system of linear equations. To speed up the inversion calculation, a hybrid direct–iterative solver combined with a block-diagonal preconditioner that has not yet been applied in anisotropic inversion is developed to accelerate the solutions for the sparse linear system resulting from forward modeling and sensitivity computations. In each GN iteration, a preconditioned conjugate gradient (PCG) method is adopted to overcome the difficulty in the sensitivity matrix storage for the anisotropic scene and obtain a model update without explicitly calculating and storing the sensitivity matrix. Before the inversion test, we use a model to demonstrate that the hybrid solver is computationally beneficial in terms of memory usage and time spent when compared with the direct solver. The good convergence properties and efficiency of the Gauss–Newton with the conjugate gradient (GN–PCG) inversion scheme are demonstrated by two synthetic models and USArray data. The proposed inversion scheme can be an important supplement to existing anisotropic inversion algorithms and provide technical support for MT data interpretation.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Aquatic reptiles</subject><subject>Conjugate gradient method</subject><subject>Data interpretation</subject><subject>Fines & penalties</subject><subject>Finite element method</subject><subject>Iterative methods</subject><subject>Linear equations</subject><subject>Objective function</subject><subject>Regularization</subject><subject>Sensitivity</subject><subject>Solvers</subject><subject>Storage</subject><subject>Technical services</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkMtKAzEYRoMoWKsP4C7gemqSuWWWpepYqBe04nJIk39qypjUJFPrznfwDX0SU-rq2xzOBwehc0pGlJLqcl4_PY8YYdkoTYsyLfkBGtA85wkpsuwQDQitioTxih2jE-9XhNAsp-UAbWvRe__7_XMPn8Ea_KrDG350IK1ROmhrQOGJNat-KQLg2gmlwQR8J5YGgg3Qdb3TEk_NBpyPOG6tw2lyhcdbLTo8Ntrb4Ow6MlGjehn0JnrBn6KjVnQezv53iF5urueT22T2UE8n41kiGctDkpNMAFtwRUoulSp5lgoQFCjIklWtJEVBM6JoW0GZp2LBCwVMZrISopBVpIfoYu9dO_vRgw_NyvbOxMuGVbEV4QUnkaJ7SjrrvYO2WTv9LtxXQ0mzC9zsAje7wM1_4PQPcvFx0w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhou, Junjun</creator><creator>Bai, Ningbo</creator><creator>Han, Bo</creator><creator>Hu, Xiangyun</creator><creator>Xiao, Tiaojie</creator><creator>Huang, Guoshu</creator><creator>Li, Jianping</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5560-2250</orcidid><orcidid>https://orcid.org/0000-0003-0242-9129</orcidid><orcidid>https://orcid.org/0000-0003-3623-8304</orcidid><orcidid>https://orcid.org/0000-0003-1582-6094</orcidid></search><sort><creationdate>2024</creationdate><title>Gauss–Newton With Preconditioned Conjugate Gradient Magnetotelluric Inversion for 3-D Axial Anisotropic Conductivities</title><author>Zhou, Junjun ; Bai, Ningbo ; Han, Bo ; Hu, Xiangyun ; Xiao, Tiaojie ; Huang, Guoshu ; Li, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-504ae2b8d078cdd7843aea1e1ec729fc066140d1f9e753ab86de2c4c9aa6c9843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Aquatic reptiles</topic><topic>Conjugate gradient method</topic><topic>Data interpretation</topic><topic>Fines & penalties</topic><topic>Finite element method</topic><topic>Iterative methods</topic><topic>Linear equations</topic><topic>Objective function</topic><topic>Regularization</topic><topic>Sensitivity</topic><topic>Solvers</topic><topic>Storage</topic><topic>Technical services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Junjun</creatorcontrib><creatorcontrib>Bai, Ningbo</creatorcontrib><creatorcontrib>Han, Bo</creatorcontrib><creatorcontrib>Hu, Xiangyun</creatorcontrib><creatorcontrib>Xiao, Tiaojie</creatorcontrib><creatorcontrib>Huang, Guoshu</creatorcontrib><creatorcontrib>Li, Jianping</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Junjun</au><au>Bai, Ningbo</au><au>Han, Bo</au><au>Hu, Xiangyun</au><au>Xiao, Tiaojie</au><au>Huang, Guoshu</au><au>Li, Jianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gauss–Newton With Preconditioned Conjugate Gradient Magnetotelluric Inversion for 3-D Axial Anisotropic Conductivities</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><abstract>We present a regularized inversion method for 3-D magnetotelluric (MT) data with axial anisotropic conductivities based on the edge-based finite element (FE) method. The Gauss–Newton (GN) approach is used to minimize the inversion objective function, including data misfit and regularization penalties, considering both structural complexity and anisotropic penalties. The most time-intensive task in the 3-D MT inversion process is solving the large sparse system of linear equations. To speed up the inversion calculation, a hybrid direct–iterative solver combined with a block-diagonal preconditioner that has not yet been applied in anisotropic inversion is developed to accelerate the solutions for the sparse linear system resulting from forward modeling and sensitivity computations. In each GN iteration, a preconditioned conjugate gradient (PCG) method is adopted to overcome the difficulty in the sensitivity matrix storage for the anisotropic scene and obtain a model update without explicitly calculating and storing the sensitivity matrix. Before the inversion test, we use a model to demonstrate that the hybrid solver is computationally beneficial in terms of memory usage and time spent when compared with the direct solver. The good convergence properties and efficiency of the Gauss–Newton with the conjugate gradient (GN–PCG) inversion scheme are demonstrated by two synthetic models and USArray data. The proposed inversion scheme can be an important supplement to existing anisotropic inversion algorithms and provide technical support for MT data interpretation.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TGRS.2024.3367378</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5560-2250</orcidid><orcidid>https://orcid.org/0000-0003-0242-9129</orcidid><orcidid>https://orcid.org/0000-0003-3623-8304</orcidid><orcidid>https://orcid.org/0000-0003-1582-6094</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2933608680 |
source | IEEE Electronic Library Online |
subjects | Algorithms Anisotropy Aquatic reptiles Conjugate gradient method Data interpretation Fines & penalties Finite element method Iterative methods Linear equations Objective function Regularization Sensitivity Solvers Storage Technical services |
title | Gauss–Newton With Preconditioned Conjugate Gradient Magnetotelluric Inversion for 3-D Axial Anisotropic Conductivities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gauss%E2%80%93Newton%20With%20Preconditioned%20Conjugate%20Gradient%20Magnetotelluric%20Inversion%20for%203-D%20Axial%20Anisotropic%20Conductivities&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhou,%20Junjun&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft_id=info:doi/10.1109/TGRS.2024.3367378&rft_dat=%3Cproquest_cross%3E2933608680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933608680&rft_id=info:pmid/&rfr_iscdi=true |