Litter Quality and Microbes Explain Aggregation Differences in a Tropical Sandy Soil

Soil aggregates store most soil organic carbon (SOC), but how does litter quality influence their formation? We hypothesized varying litter quality to facilitate differences in aggregate formation by altering the seasonal development of microbial biomass (MB) C and N, with MB driving  aggregate deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of soil science and plant nutrition 2022-03, Vol.22 (1), p.848-860
Hauptverfasser: Laub, Moritz, Schlichenmeier, Samuel, Vityakon, Patma, Cadisch, Georg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 860
container_issue 1
container_start_page 848
container_title Journal of soil science and plant nutrition
container_volume 22
creator Laub, Moritz
Schlichenmeier, Samuel
Vityakon, Patma
Cadisch, Georg
description Soil aggregates store most soil organic carbon (SOC), but how does litter quality influence their formation? We hypothesized varying litter quality to facilitate differences in aggregate formation by altering the seasonal development of microbial biomass (MB) C and N, with MB driving  aggregate development in a tropical sandy soil in Thailand. Aggregate development was studied in a long-term fallow experiment, receiving 10 Mg ha −1 annual applications of rice ( Oryza sativa ) straw (low N and polyphenols (PP)), groundnut ( Arachis hypogaea ) stover (high N, low PP), tamarind ( Tamarindus indica ) litter (medium N and PP), or dipterocarp ( Dipterocarpus tuberculatus ) leaf litter (low N, high PP) compared to a control. N-rich litter from groundnut and tamarind led to significantly higher MB, bulk soil C and aggregate C than dipterocarp, rice straw, and the control. Bulk soil C and small macroaggregates C of N-rich litter treatments increased about 7% in 30 weeks. Increasing MB N explained increasing small macroaggregate C and both, MB C or N were important covariates explaining temporal variations of C stored in themicroaggregates, in silt and clay. MB also explained temporal variations of aggregate fraction weights. With time, SMA C only increased in the N-rich groundnut and tamarind treatments, but decreased in other treatments. Connections of MB to aggregate C and weight substantiated the importance of microbial activity for aggregate formation and carbon sequestration. By promoting MB for longest time spans, medium-quality tamarind could best facilitateaggregate formation, and increase silt and clay C.
doi_str_mv 10.1007/s42729-021-00696-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933530369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933530369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8ce696ad94a5a22e0dc6c21e648f58211a1dfcc72229db12f104ced6193f97ea3</originalsourceid><addsrcrecordid>eNp9UEtLxDAQDqLgsu4f8BTwHJ0kbdocl3V9wIrIrueQTZOSpbY1acH990YrenMuM_A9ZuZD6JLCNQUobmLGCiYJMEoAhBREnKAZFLQkMqfi9HeG8hwtYjxAqhIgh2KGdhs_DDbgl1E3fjhi3Vb4yZvQ7W3E64--0b7Fy7oOttaD71p8652zwbYm4QnSeBe63hvd4G3SHvG2880FOnO6iXbx0-fo9W69Wz2QzfP942q5IYYLPpDS2HStrmSmc82YhcoIw6gVWenyklGqaeWMKRhjstpT5ihkxlaCSu5kYTWfo6vJtw_d-2jjoA7dGNq0UjHJec6BC5lYbGKlr2IM1qk--DcdjoqC-gpQTQGqFKD6DlCJJOKTKCZyW9vwZ_2P6hO6EnLP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933530369</pqid></control><display><type>article</type><title>Litter Quality and Microbes Explain Aggregation Differences in a Tropical Sandy Soil</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Laub, Moritz ; Schlichenmeier, Samuel ; Vityakon, Patma ; Cadisch, Georg</creator><creatorcontrib>Laub, Moritz ; Schlichenmeier, Samuel ; Vityakon, Patma ; Cadisch, Georg</creatorcontrib><description>Soil aggregates store most soil organic carbon (SOC), but how does litter quality influence their formation? We hypothesized varying litter quality to facilitate differences in aggregate formation by altering the seasonal development of microbial biomass (MB) C and N, with MB driving  aggregate development in a tropical sandy soil in Thailand. Aggregate development was studied in a long-term fallow experiment, receiving 10 Mg ha −1 annual applications of rice ( Oryza sativa ) straw (low N and polyphenols (PP)), groundnut ( Arachis hypogaea ) stover (high N, low PP), tamarind ( Tamarindus indica ) litter (medium N and PP), or dipterocarp ( Dipterocarpus tuberculatus ) leaf litter (low N, high PP) compared to a control. N-rich litter from groundnut and tamarind led to significantly higher MB, bulk soil C and aggregate C than dipterocarp, rice straw, and the control. Bulk soil C and small macroaggregates C of N-rich litter treatments increased about 7% in 30 weeks. Increasing MB N explained increasing small macroaggregate C and both, MB C or N were important covariates explaining temporal variations of C stored in themicroaggregates, in silt and clay. MB also explained temporal variations of aggregate fraction weights. With time, SMA C only increased in the N-rich groundnut and tamarind treatments, but decreased in other treatments. Connections of MB to aggregate C and weight substantiated the importance of microbial activity for aggregate formation and carbon sequestration. By promoting MB for longest time spans, medium-quality tamarind could best facilitateaggregate formation, and increase silt and clay C.</description><identifier>ISSN: 0718-9508</identifier><identifier>EISSN: 0718-9516</identifier><identifier>DOI: 10.1007/s42729-021-00696-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aggregates ; Agriculture ; Arachis hypogaea ; Biological activity ; Biomass ; Biomedical and Life Sciences ; Carbon ; Carbon sequestration ; Cellulose ; Clay ; Dipterocarpus tuberculatus ; Ecology ; Environment ; Experiments ; Groundnuts ; Leaf litter ; Life Sciences ; Lignin ; Microbial activity ; Microorganisms ; Nitrogen ; Organic carbon ; Organic soils ; Original Paper ; Oryza sativa ; Plant Sciences ; Polyphenols ; Rice ; Rice straw ; Sandy soils ; Silt ; Soil aggregates ; Soil Science &amp; Conservation ; Stover ; Straw ; Tamarind ; Tamarindus indica ; Temporal variations</subject><ispartof>Journal of soil science and plant nutrition, 2022-03, Vol.22 (1), p.848-860</ispartof><rights>The Author(s) 2022. corrected publication 2021</rights><rights>The Author(s) 2022. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8ce696ad94a5a22e0dc6c21e648f58211a1dfcc72229db12f104ced6193f97ea3</citedby><cites>FETCH-LOGICAL-c363t-8ce696ad94a5a22e0dc6c21e648f58211a1dfcc72229db12f104ced6193f97ea3</cites><orcidid>0000-0003-0972-3734 ; 0000-0003-2415-8067 ; 0000-0003-0035-2826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42729-021-00696-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2933530369?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21389,21390,21391,21392,23257,27925,27926,33531,33704,33745,34006,34315,41489,42558,43660,43788,43806,43954,44068,51320,64386,64390,72470</link.rule.ids></links><search><creatorcontrib>Laub, Moritz</creatorcontrib><creatorcontrib>Schlichenmeier, Samuel</creatorcontrib><creatorcontrib>Vityakon, Patma</creatorcontrib><creatorcontrib>Cadisch, Georg</creatorcontrib><title>Litter Quality and Microbes Explain Aggregation Differences in a Tropical Sandy Soil</title><title>Journal of soil science and plant nutrition</title><addtitle>J Soil Sci Plant Nutr</addtitle><description>Soil aggregates store most soil organic carbon (SOC), but how does litter quality influence their formation? We hypothesized varying litter quality to facilitate differences in aggregate formation by altering the seasonal development of microbial biomass (MB) C and N, with MB driving  aggregate development in a tropical sandy soil in Thailand. Aggregate development was studied in a long-term fallow experiment, receiving 10 Mg ha −1 annual applications of rice ( Oryza sativa ) straw (low N and polyphenols (PP)), groundnut ( Arachis hypogaea ) stover (high N, low PP), tamarind ( Tamarindus indica ) litter (medium N and PP), or dipterocarp ( Dipterocarpus tuberculatus ) leaf litter (low N, high PP) compared to a control. N-rich litter from groundnut and tamarind led to significantly higher MB, bulk soil C and aggregate C than dipterocarp, rice straw, and the control. Bulk soil C and small macroaggregates C of N-rich litter treatments increased about 7% in 30 weeks. Increasing MB N explained increasing small macroaggregate C and both, MB C or N were important covariates explaining temporal variations of C stored in themicroaggregates, in silt and clay. MB also explained temporal variations of aggregate fraction weights. With time, SMA C only increased in the N-rich groundnut and tamarind treatments, but decreased in other treatments. Connections of MB to aggregate C and weight substantiated the importance of microbial activity for aggregate formation and carbon sequestration. By promoting MB for longest time spans, medium-quality tamarind could best facilitateaggregate formation, and increase silt and clay C.</description><subject>Aggregates</subject><subject>Agriculture</subject><subject>Arachis hypogaea</subject><subject>Biological activity</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Carbon sequestration</subject><subject>Cellulose</subject><subject>Clay</subject><subject>Dipterocarpus tuberculatus</subject><subject>Ecology</subject><subject>Environment</subject><subject>Experiments</subject><subject>Groundnuts</subject><subject>Leaf litter</subject><subject>Life Sciences</subject><subject>Lignin</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Nitrogen</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Original Paper</subject><subject>Oryza sativa</subject><subject>Plant Sciences</subject><subject>Polyphenols</subject><subject>Rice</subject><subject>Rice straw</subject><subject>Sandy soils</subject><subject>Silt</subject><subject>Soil aggregates</subject><subject>Soil Science &amp; Conservation</subject><subject>Stover</subject><subject>Straw</subject><subject>Tamarind</subject><subject>Tamarindus indica</subject><subject>Temporal variations</subject><issn>0718-9508</issn><issn>0718-9516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UEtLxDAQDqLgsu4f8BTwHJ0kbdocl3V9wIrIrueQTZOSpbY1acH990YrenMuM_A9ZuZD6JLCNQUobmLGCiYJMEoAhBREnKAZFLQkMqfi9HeG8hwtYjxAqhIgh2KGdhs_DDbgl1E3fjhi3Vb4yZvQ7W3E64--0b7Fy7oOttaD71p8652zwbYm4QnSeBe63hvd4G3SHvG2880FOnO6iXbx0-fo9W69Wz2QzfP942q5IYYLPpDS2HStrmSmc82YhcoIw6gVWenyklGqaeWMKRhjstpT5ihkxlaCSu5kYTWfo6vJtw_d-2jjoA7dGNq0UjHJec6BC5lYbGKlr2IM1qk--DcdjoqC-gpQTQGqFKD6DlCJJOKTKCZyW9vwZ_2P6hO6EnLP</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Laub, Moritz</creator><creator>Schlichenmeier, Samuel</creator><creator>Vityakon, Patma</creator><creator>Cadisch, Georg</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0972-3734</orcidid><orcidid>https://orcid.org/0000-0003-2415-8067</orcidid><orcidid>https://orcid.org/0000-0003-0035-2826</orcidid></search><sort><creationdate>20220301</creationdate><title>Litter Quality and Microbes Explain Aggregation Differences in a Tropical Sandy Soil</title><author>Laub, Moritz ; Schlichenmeier, Samuel ; Vityakon, Patma ; Cadisch, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8ce696ad94a5a22e0dc6c21e648f58211a1dfcc72229db12f104ced6193f97ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aggregates</topic><topic>Agriculture</topic><topic>Arachis hypogaea</topic><topic>Biological activity</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Carbon sequestration</topic><topic>Cellulose</topic><topic>Clay</topic><topic>Dipterocarpus tuberculatus</topic><topic>Ecology</topic><topic>Environment</topic><topic>Experiments</topic><topic>Groundnuts</topic><topic>Leaf litter</topic><topic>Life Sciences</topic><topic>Lignin</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Nitrogen</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Original Paper</topic><topic>Oryza sativa</topic><topic>Plant Sciences</topic><topic>Polyphenols</topic><topic>Rice</topic><topic>Rice straw</topic><topic>Sandy soils</topic><topic>Silt</topic><topic>Soil aggregates</topic><topic>Soil Science &amp; Conservation</topic><topic>Stover</topic><topic>Straw</topic><topic>Tamarind</topic><topic>Tamarindus indica</topic><topic>Temporal variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laub, Moritz</creatorcontrib><creatorcontrib>Schlichenmeier, Samuel</creatorcontrib><creatorcontrib>Vityakon, Patma</creatorcontrib><creatorcontrib>Cadisch, Georg</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of soil science and plant nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laub, Moritz</au><au>Schlichenmeier, Samuel</au><au>Vityakon, Patma</au><au>Cadisch, Georg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Litter Quality and Microbes Explain Aggregation Differences in a Tropical Sandy Soil</atitle><jtitle>Journal of soil science and plant nutrition</jtitle><stitle>J Soil Sci Plant Nutr</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>22</volume><issue>1</issue><spage>848</spage><epage>860</epage><pages>848-860</pages><issn>0718-9508</issn><eissn>0718-9516</eissn><abstract>Soil aggregates store most soil organic carbon (SOC), but how does litter quality influence their formation? We hypothesized varying litter quality to facilitate differences in aggregate formation by altering the seasonal development of microbial biomass (MB) C and N, with MB driving  aggregate development in a tropical sandy soil in Thailand. Aggregate development was studied in a long-term fallow experiment, receiving 10 Mg ha −1 annual applications of rice ( Oryza sativa ) straw (low N and polyphenols (PP)), groundnut ( Arachis hypogaea ) stover (high N, low PP), tamarind ( Tamarindus indica ) litter (medium N and PP), or dipterocarp ( Dipterocarpus tuberculatus ) leaf litter (low N, high PP) compared to a control. N-rich litter from groundnut and tamarind led to significantly higher MB, bulk soil C and aggregate C than dipterocarp, rice straw, and the control. Bulk soil C and small macroaggregates C of N-rich litter treatments increased about 7% in 30 weeks. Increasing MB N explained increasing small macroaggregate C and both, MB C or N were important covariates explaining temporal variations of C stored in themicroaggregates, in silt and clay. MB also explained temporal variations of aggregate fraction weights. With time, SMA C only increased in the N-rich groundnut and tamarind treatments, but decreased in other treatments. Connections of MB to aggregate C and weight substantiated the importance of microbial activity for aggregate formation and carbon sequestration. By promoting MB for longest time spans, medium-quality tamarind could best facilitateaggregate formation, and increase silt and clay C.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42729-021-00696-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0972-3734</orcidid><orcidid>https://orcid.org/0000-0003-2415-8067</orcidid><orcidid>https://orcid.org/0000-0003-0035-2826</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0718-9508
ispartof Journal of soil science and plant nutrition, 2022-03, Vol.22 (1), p.848-860
issn 0718-9508
0718-9516
language eng
recordid cdi_proquest_journals_2933530369
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Aggregates
Agriculture
Arachis hypogaea
Biological activity
Biomass
Biomedical and Life Sciences
Carbon
Carbon sequestration
Cellulose
Clay
Dipterocarpus tuberculatus
Ecology
Environment
Experiments
Groundnuts
Leaf litter
Life Sciences
Lignin
Microbial activity
Microorganisms
Nitrogen
Organic carbon
Organic soils
Original Paper
Oryza sativa
Plant Sciences
Polyphenols
Rice
Rice straw
Sandy soils
Silt
Soil aggregates
Soil Science & Conservation
Stover
Straw
Tamarind
Tamarindus indica
Temporal variations
title Litter Quality and Microbes Explain Aggregation Differences in a Tropical Sandy Soil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Litter%20Quality%20and%20Microbes%20Explain%20Aggregation%20Differences%20in%20a%20Tropical%20Sandy%20Soil&rft.jtitle=Journal%20of%20soil%20science%20and%20plant%20nutrition&rft.au=Laub,%20Moritz&rft.date=2022-03-01&rft.volume=22&rft.issue=1&rft.spage=848&rft.epage=860&rft.pages=848-860&rft.issn=0718-9508&rft.eissn=0718-9516&rft_id=info:doi/10.1007/s42729-021-00696-6&rft_dat=%3Cproquest_cross%3E2933530369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933530369&rft_id=info:pmid/&rfr_iscdi=true