Litter Quality and Microbes Explain Aggregation Differences in a Tropical Sandy Soil
Soil aggregates store most soil organic carbon (SOC), but how does litter quality influence their formation? We hypothesized varying litter quality to facilitate differences in aggregate formation by altering the seasonal development of microbial biomass (MB) C and N, with MB driving aggregate deve...
Gespeichert in:
Veröffentlicht in: | Journal of soil science and plant nutrition 2022-03, Vol.22 (1), p.848-860 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 860 |
---|---|
container_issue | 1 |
container_start_page | 848 |
container_title | Journal of soil science and plant nutrition |
container_volume | 22 |
creator | Laub, Moritz Schlichenmeier, Samuel Vityakon, Patma Cadisch, Georg |
description | Soil aggregates store most soil organic carbon (SOC), but how does litter quality influence their formation? We hypothesized varying litter quality to facilitate differences in aggregate formation by altering the seasonal development of microbial biomass (MB) C and N, with MB driving aggregate development in a tropical sandy soil in Thailand. Aggregate development was studied in a long-term fallow experiment, receiving 10 Mg ha
−1
annual applications of rice (
Oryza sativa
) straw (low N and polyphenols (PP)), groundnut (
Arachis hypogaea
) stover (high N, low PP), tamarind (
Tamarindus indica
) litter (medium N and PP), or dipterocarp (
Dipterocarpus tuberculatus
) leaf litter (low N, high PP) compared to a control. N-rich litter from groundnut and tamarind led to significantly higher MB, bulk soil C and aggregate C than dipterocarp, rice straw, and the control. Bulk soil C and small macroaggregates C of N-rich litter treatments increased about 7% in 30 weeks. Increasing MB N explained increasing small macroaggregate C and both, MB C or N were important covariates explaining temporal variations of C stored in themicroaggregates, in silt and clay. MB also explained temporal variations of aggregate fraction weights. With time, SMA C only increased in the N-rich groundnut and tamarind treatments, but decreased in other treatments. Connections of MB to aggregate C and weight substantiated the importance of microbial activity for aggregate formation and carbon sequestration. By promoting MB for longest time spans, medium-quality tamarind could best facilitateaggregate formation, and increase silt and clay C. |
doi_str_mv | 10.1007/s42729-021-00696-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2933530369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933530369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8ce696ad94a5a22e0dc6c21e648f58211a1dfcc72229db12f104ced6193f97ea3</originalsourceid><addsrcrecordid>eNp9UEtLxDAQDqLgsu4f8BTwHJ0kbdocl3V9wIrIrueQTZOSpbY1acH990YrenMuM_A9ZuZD6JLCNQUobmLGCiYJMEoAhBREnKAZFLQkMqfi9HeG8hwtYjxAqhIgh2KGdhs_DDbgl1E3fjhi3Vb4yZvQ7W3E64--0b7Fy7oOttaD71p8652zwbYm4QnSeBe63hvd4G3SHvG2880FOnO6iXbx0-fo9W69Wz2QzfP942q5IYYLPpDS2HStrmSmc82YhcoIw6gVWenyklGqaeWMKRhjstpT5ihkxlaCSu5kYTWfo6vJtw_d-2jjoA7dGNq0UjHJec6BC5lYbGKlr2IM1qk--DcdjoqC-gpQTQGqFKD6DlCJJOKTKCZyW9vwZ_2P6hO6EnLP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933530369</pqid></control><display><type>article</type><title>Litter Quality and Microbes Explain Aggregation Differences in a Tropical Sandy Soil</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Laub, Moritz ; Schlichenmeier, Samuel ; Vityakon, Patma ; Cadisch, Georg</creator><creatorcontrib>Laub, Moritz ; Schlichenmeier, Samuel ; Vityakon, Patma ; Cadisch, Georg</creatorcontrib><description>Soil aggregates store most soil organic carbon (SOC), but how does litter quality influence their formation? We hypothesized varying litter quality to facilitate differences in aggregate formation by altering the seasonal development of microbial biomass (MB) C and N, with MB driving aggregate development in a tropical sandy soil in Thailand. Aggregate development was studied in a long-term fallow experiment, receiving 10 Mg ha
−1
annual applications of rice (
Oryza sativa
) straw (low N and polyphenols (PP)), groundnut (
Arachis hypogaea
) stover (high N, low PP), tamarind (
Tamarindus indica
) litter (medium N and PP), or dipterocarp (
Dipterocarpus tuberculatus
) leaf litter (low N, high PP) compared to a control. N-rich litter from groundnut and tamarind led to significantly higher MB, bulk soil C and aggregate C than dipterocarp, rice straw, and the control. Bulk soil C and small macroaggregates C of N-rich litter treatments increased about 7% in 30 weeks. Increasing MB N explained increasing small macroaggregate C and both, MB C or N were important covariates explaining temporal variations of C stored in themicroaggregates, in silt and clay. MB also explained temporal variations of aggregate fraction weights. With time, SMA C only increased in the N-rich groundnut and tamarind treatments, but decreased in other treatments. Connections of MB to aggregate C and weight substantiated the importance of microbial activity for aggregate formation and carbon sequestration. By promoting MB for longest time spans, medium-quality tamarind could best facilitateaggregate formation, and increase silt and clay C.</description><identifier>ISSN: 0718-9508</identifier><identifier>EISSN: 0718-9516</identifier><identifier>DOI: 10.1007/s42729-021-00696-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aggregates ; Agriculture ; Arachis hypogaea ; Biological activity ; Biomass ; Biomedical and Life Sciences ; Carbon ; Carbon sequestration ; Cellulose ; Clay ; Dipterocarpus tuberculatus ; Ecology ; Environment ; Experiments ; Groundnuts ; Leaf litter ; Life Sciences ; Lignin ; Microbial activity ; Microorganisms ; Nitrogen ; Organic carbon ; Organic soils ; Original Paper ; Oryza sativa ; Plant Sciences ; Polyphenols ; Rice ; Rice straw ; Sandy soils ; Silt ; Soil aggregates ; Soil Science & Conservation ; Stover ; Straw ; Tamarind ; Tamarindus indica ; Temporal variations</subject><ispartof>Journal of soil science and plant nutrition, 2022-03, Vol.22 (1), p.848-860</ispartof><rights>The Author(s) 2022. corrected publication 2021</rights><rights>The Author(s) 2022. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8ce696ad94a5a22e0dc6c21e648f58211a1dfcc72229db12f104ced6193f97ea3</citedby><cites>FETCH-LOGICAL-c363t-8ce696ad94a5a22e0dc6c21e648f58211a1dfcc72229db12f104ced6193f97ea3</cites><orcidid>0000-0003-0972-3734 ; 0000-0003-2415-8067 ; 0000-0003-0035-2826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42729-021-00696-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2933530369?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21389,21390,21391,21392,23257,27925,27926,33531,33704,33745,34006,34315,41489,42558,43660,43788,43806,43954,44068,51320,64386,64390,72470</link.rule.ids></links><search><creatorcontrib>Laub, Moritz</creatorcontrib><creatorcontrib>Schlichenmeier, Samuel</creatorcontrib><creatorcontrib>Vityakon, Patma</creatorcontrib><creatorcontrib>Cadisch, Georg</creatorcontrib><title>Litter Quality and Microbes Explain Aggregation Differences in a Tropical Sandy Soil</title><title>Journal of soil science and plant nutrition</title><addtitle>J Soil Sci Plant Nutr</addtitle><description>Soil aggregates store most soil organic carbon (SOC), but how does litter quality influence their formation? We hypothesized varying litter quality to facilitate differences in aggregate formation by altering the seasonal development of microbial biomass (MB) C and N, with MB driving aggregate development in a tropical sandy soil in Thailand. Aggregate development was studied in a long-term fallow experiment, receiving 10 Mg ha
−1
annual applications of rice (
Oryza sativa
) straw (low N and polyphenols (PP)), groundnut (
Arachis hypogaea
) stover (high N, low PP), tamarind (
Tamarindus indica
) litter (medium N and PP), or dipterocarp (
Dipterocarpus tuberculatus
) leaf litter (low N, high PP) compared to a control. N-rich litter from groundnut and tamarind led to significantly higher MB, bulk soil C and aggregate C than dipterocarp, rice straw, and the control. Bulk soil C and small macroaggregates C of N-rich litter treatments increased about 7% in 30 weeks. Increasing MB N explained increasing small macroaggregate C and both, MB C or N were important covariates explaining temporal variations of C stored in themicroaggregates, in silt and clay. MB also explained temporal variations of aggregate fraction weights. With time, SMA C only increased in the N-rich groundnut and tamarind treatments, but decreased in other treatments. Connections of MB to aggregate C and weight substantiated the importance of microbial activity for aggregate formation and carbon sequestration. By promoting MB for longest time spans, medium-quality tamarind could best facilitateaggregate formation, and increase silt and clay C.</description><subject>Aggregates</subject><subject>Agriculture</subject><subject>Arachis hypogaea</subject><subject>Biological activity</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Carbon sequestration</subject><subject>Cellulose</subject><subject>Clay</subject><subject>Dipterocarpus tuberculatus</subject><subject>Ecology</subject><subject>Environment</subject><subject>Experiments</subject><subject>Groundnuts</subject><subject>Leaf litter</subject><subject>Life Sciences</subject><subject>Lignin</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Nitrogen</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Original Paper</subject><subject>Oryza sativa</subject><subject>Plant Sciences</subject><subject>Polyphenols</subject><subject>Rice</subject><subject>Rice straw</subject><subject>Sandy soils</subject><subject>Silt</subject><subject>Soil aggregates</subject><subject>Soil Science & Conservation</subject><subject>Stover</subject><subject>Straw</subject><subject>Tamarind</subject><subject>Tamarindus indica</subject><subject>Temporal variations</subject><issn>0718-9508</issn><issn>0718-9516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UEtLxDAQDqLgsu4f8BTwHJ0kbdocl3V9wIrIrueQTZOSpbY1acH990YrenMuM_A9ZuZD6JLCNQUobmLGCiYJMEoAhBREnKAZFLQkMqfi9HeG8hwtYjxAqhIgh2KGdhs_DDbgl1E3fjhi3Vb4yZvQ7W3E64--0b7Fy7oOttaD71p8652zwbYm4QnSeBe63hvd4G3SHvG2880FOnO6iXbx0-fo9W69Wz2QzfP942q5IYYLPpDS2HStrmSmc82YhcoIw6gVWenyklGqaeWMKRhjstpT5ihkxlaCSu5kYTWfo6vJtw_d-2jjoA7dGNq0UjHJec6BC5lYbGKlr2IM1qk--DcdjoqC-gpQTQGqFKD6DlCJJOKTKCZyW9vwZ_2P6hO6EnLP</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Laub, Moritz</creator><creator>Schlichenmeier, Samuel</creator><creator>Vityakon, Patma</creator><creator>Cadisch, Georg</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0972-3734</orcidid><orcidid>https://orcid.org/0000-0003-2415-8067</orcidid><orcidid>https://orcid.org/0000-0003-0035-2826</orcidid></search><sort><creationdate>20220301</creationdate><title>Litter Quality and Microbes Explain Aggregation Differences in a Tropical Sandy Soil</title><author>Laub, Moritz ; Schlichenmeier, Samuel ; Vityakon, Patma ; Cadisch, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8ce696ad94a5a22e0dc6c21e648f58211a1dfcc72229db12f104ced6193f97ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aggregates</topic><topic>Agriculture</topic><topic>Arachis hypogaea</topic><topic>Biological activity</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Carbon sequestration</topic><topic>Cellulose</topic><topic>Clay</topic><topic>Dipterocarpus tuberculatus</topic><topic>Ecology</topic><topic>Environment</topic><topic>Experiments</topic><topic>Groundnuts</topic><topic>Leaf litter</topic><topic>Life Sciences</topic><topic>Lignin</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Nitrogen</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Original Paper</topic><topic>Oryza sativa</topic><topic>Plant Sciences</topic><topic>Polyphenols</topic><topic>Rice</topic><topic>Rice straw</topic><topic>Sandy soils</topic><topic>Silt</topic><topic>Soil aggregates</topic><topic>Soil Science & Conservation</topic><topic>Stover</topic><topic>Straw</topic><topic>Tamarind</topic><topic>Tamarindus indica</topic><topic>Temporal variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laub, Moritz</creatorcontrib><creatorcontrib>Schlichenmeier, Samuel</creatorcontrib><creatorcontrib>Vityakon, Patma</creatorcontrib><creatorcontrib>Cadisch, Georg</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of soil science and plant nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laub, Moritz</au><au>Schlichenmeier, Samuel</au><au>Vityakon, Patma</au><au>Cadisch, Georg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Litter Quality and Microbes Explain Aggregation Differences in a Tropical Sandy Soil</atitle><jtitle>Journal of soil science and plant nutrition</jtitle><stitle>J Soil Sci Plant Nutr</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>22</volume><issue>1</issue><spage>848</spage><epage>860</epage><pages>848-860</pages><issn>0718-9508</issn><eissn>0718-9516</eissn><abstract>Soil aggregates store most soil organic carbon (SOC), but how does litter quality influence their formation? We hypothesized varying litter quality to facilitate differences in aggregate formation by altering the seasonal development of microbial biomass (MB) C and N, with MB driving aggregate development in a tropical sandy soil in Thailand. Aggregate development was studied in a long-term fallow experiment, receiving 10 Mg ha
−1
annual applications of rice (
Oryza sativa
) straw (low N and polyphenols (PP)), groundnut (
Arachis hypogaea
) stover (high N, low PP), tamarind (
Tamarindus indica
) litter (medium N and PP), or dipterocarp (
Dipterocarpus tuberculatus
) leaf litter (low N, high PP) compared to a control. N-rich litter from groundnut and tamarind led to significantly higher MB, bulk soil C and aggregate C than dipterocarp, rice straw, and the control. Bulk soil C and small macroaggregates C of N-rich litter treatments increased about 7% in 30 weeks. Increasing MB N explained increasing small macroaggregate C and both, MB C or N were important covariates explaining temporal variations of C stored in themicroaggregates, in silt and clay. MB also explained temporal variations of aggregate fraction weights. With time, SMA C only increased in the N-rich groundnut and tamarind treatments, but decreased in other treatments. Connections of MB to aggregate C and weight substantiated the importance of microbial activity for aggregate formation and carbon sequestration. By promoting MB for longest time spans, medium-quality tamarind could best facilitateaggregate formation, and increase silt and clay C.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42729-021-00696-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0972-3734</orcidid><orcidid>https://orcid.org/0000-0003-2415-8067</orcidid><orcidid>https://orcid.org/0000-0003-0035-2826</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0718-9508 |
ispartof | Journal of soil science and plant nutrition, 2022-03, Vol.22 (1), p.848-860 |
issn | 0718-9508 0718-9516 |
language | eng |
recordid | cdi_proquest_journals_2933530369 |
source | ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Aggregates Agriculture Arachis hypogaea Biological activity Biomass Biomedical and Life Sciences Carbon Carbon sequestration Cellulose Clay Dipterocarpus tuberculatus Ecology Environment Experiments Groundnuts Leaf litter Life Sciences Lignin Microbial activity Microorganisms Nitrogen Organic carbon Organic soils Original Paper Oryza sativa Plant Sciences Polyphenols Rice Rice straw Sandy soils Silt Soil aggregates Soil Science & Conservation Stover Straw Tamarind Tamarindus indica Temporal variations |
title | Litter Quality and Microbes Explain Aggregation Differences in a Tropical Sandy Soil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Litter%20Quality%20and%20Microbes%20Explain%20Aggregation%20Differences%20in%20a%20Tropical%20Sandy%20Soil&rft.jtitle=Journal%20of%20soil%20science%20and%20plant%20nutrition&rft.au=Laub,%20Moritz&rft.date=2022-03-01&rft.volume=22&rft.issue=1&rft.spage=848&rft.epage=860&rft.pages=848-860&rft.issn=0718-9508&rft.eissn=0718-9516&rft_id=info:doi/10.1007/s42729-021-00696-6&rft_dat=%3Cproquest_cross%3E2933530369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933530369&rft_id=info:pmid/&rfr_iscdi=true |